figshare
Browse

Resolving bond angle of a plasmonic metamolecule

Posted on 2017-09-07 - 14:58
Plasmonic metamolecules have been found to have many peculiar properties. Applications in biological and materials science have also been demonstrated, such as reconfigurable 3D building blocks for complex nano architectures and imaging probes for high resolution sensing. In these applications, the fast detection of the bond angles of the sub-wavelength metamolecules is highly desired. However, the angle detection is not the same as orientation detection, since it has two orientations to be determined simultaneously while people only has to measure one orientation in the use of common orientation sensor. In this work, we propose and demonstrate a method to resolve the bond angle of a plasmonic metamolecule composed of three spherical nanoparticles. The detection of the bond angle is realized via the modulation depth analysis of polarization-resolved dark-field images. The underlying mechanism is found to be the opposite responses of the bonding mode and anti-bonding mode to the polarization variation of the incident light. In addition, the spectrally degenerate structures are further distinguished by the spot center localization method. This method will pave the way for real application of plasmonic metamolecules.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Read the peer-reviewed publication

Optica

AUTHORS (7)

Yanrong Wang
Ruqiang Zheng
Yufeng Ding
Wenjun Fan
Dahe Liu
jing zhou
Jinwei Shi

CATEGORIES

need help?