figshare
Browse

Quantum Nuclear Motion of Helium and Molecular Nitrogen Clusters in Carbon Nanotubes

Version 4 2017-03-29, 19:33
Version 3 2017-03-29, 19:19
Version 2 2017-02-14, 15:51
Version 1 2017-02-13, 22:04
Posted on 2017-03-29 - 19:33
We study the quantum nuclear motion of N 4He atoms or N N2 molecules (N < 4) confined in carbon nanotubes using an ad hoc-developed nuclear wave function-based approach. Density functional theory (DFT)-based symmetry-adapted perturbation theory is used to derive parameters for a new pairwise potential model describing the gas adsorption to carbon materials. The predicted nuclear motion of He atoms inside a confining potential is directly compared to probability densities obtained by orbital-free He-DFT theory. The interaction of small clusters of adsorbates is also studied via a combination of both the discrete atomic and the continuous density approaches. Our results agree well with previously reported experimental and theoretical studies and provide new physical insights into the very different quantum confinement effects depending on the diameter of the carbon nanotubes and the impact of quantum phenomena on the gas storage capabilities at low temperatures.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?