figshare
Browse

Performance of gimbal-based dynamic tumor tracking for treating liver carcinoma

Posted on 2018-12-05 - 05:00
Abstract Background Since the introduction of tumor tracking in radiotherapy, it is possible to ensure a precise irradiation of moving targets. To follow the tumor movement, most systems rely on the detection of implanted markers and correlation models between the internal and external patient movement. This study reports the clinical workflow and first results of the dynamic tumor tracking (DTT) performance for patients with liver carcinoma at the Vero SBRT system of the University Hospital Erlangen regarding the detection of the internal marker and the changes of the determined correlation models. Methods So far 13 liver patients were treated with DTT. For each patient, two fiducial markers (FM), which are monitored with X-rays during treatment, were implanted in the vicinity of the tumor. All patients received a fraction dose of 4–6 Gy with 8 to 12 fractions. Treatment and patient data is evaluated by processing the acquired log-files of the DTT treatment. Based on this, the marker detection and the changes of the correlation model between the internal and external movement is investigated. Results The median treatment time was 19:42 min. During treatment a median of 173 X-ray stereoscopic images were acquired. The marker detection was successful in 64.6% of the images. The FM detection is independent of the relative angle between the marker and the imager, but shows a dependency on the average intensity surrounding the FM position within the kV images. The number of correlation models needed during treatment increases in the presence of baseline shifts. The comparison of the correlation models shows large differences in the internal-external correlation between the different models acquired for one patient. Conclusion Thirteen liver patients were treated with DTT at the Vero SBRT system and the marker detection was analyzed. Furthermore, the importance of regularly monitoring the internal target motion could be shown, since the correlation between the internal and external motion changes considerably over the course of the treatment.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?