figshare
Browse

Path sampling simulations reveal how the Q61L mutation restricts the dynamics of KRas

Posted on 2020-02-22 - 08:57
The GTPase KRas is a signaling protein in networks for cell differentiation, growth, and division. KRas mutations can prolong activation of these networks, resulting in tumor formation. When active, KRas tightly binds GTP. Several oncogenic mutations affect the conversion between this rigid state and inactive, more flexible states. Detailed understanding of these transitions may provide valuable insights into how mutations affect KRas. Path sampling simulations, which focus on transitions, show KRas visiting several states, which are the same for wild type and the oncogenic mutant Q61L. Large differences occur when converting between these states, indicating the dramatic effect of the Q61L mutation on KRas dynamics. For Q61L a route to
the flexible state is inaccessible, thus shifting the equilibrium to more rigid states. Our methodology presents a novel way to predict dynamical effects of KRas mutations, which may aid in identifying potential therapeutic targets.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?