figshare
Browse

One-Step Method for Fabricating Janus Aramid Nanofiber/MXene Nanocomposite Films with Improved Joule Heating and Thermal Camouflage Properties

Posted on 2023-11-15 - 21:03
The integration of ultraflexible and mechanically robust films with electric heaters and camouflage technology provides a promising platform for the development of wearable devices, especially for aerospace and military applications. Herein, we present a facile and efficient one-step vacuum-assisted filtration method for fabricating Janus films based on aramid nanofibers (ANF) and Ti3C2Tx (MXene). The ANF/MXene nanocomposite film exhibits remarkable properties, including high conductivity (23809.5 S/m), excellent mechanical strength (102.54 MPa), and outstanding thermal stability (575 °C). Most notably, the Janus ANF/MXene composite film demonstrates superior Joule heating performance with a low driving voltage (1–5 V), high heating temperature (30–276 °C), and rapid response time (within 5 s). Additionally, the film exhibits effective thermal camouflage (72 °C for objects with temperatures above 163 °C) and excellent electromagnetic interference shielding properties (SSE/t = 32475.6 dB cm2/g). These results demonstrate that Janus ANF/MXene films possess a unique combination of thermal camouflage, Joule heating, and electromagnetic interference shielding properties, making them highly promising for wearable devices, high-performance electrical heating, infrared stealth, and security protection applications.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?