Near-deterministic activation of room temperature quantum emitters in hexagonal boron nitride

Published on 2018-09-12T21:54:40Z (GMT) by
Applications of quantum science to computing, cryptography and imaging are on their way to becoming key next generation technologies. Owing to the high-speed transmission and exceptional noise properties of photons, quantum photonic architectures are likely to play a central role. A long-standing hurdle, however, has been the realization of robust, device-compatible single photon sources that can be activated and controlled on demand. Here we demonstrate large arrays of room-temperature quantum emitters in two-dimensional hexagonal boron nitride (hBN). The large energy gap inherent to this Van der Waals material stabilizes the emitters at room temperature within nanoscale regions defined by substrate-induced deformation of few-atomic-layer hBN. Combining analytical and numerical modeling we show that emitter activation is the result of carrier trapping in deformation potential wells localized near the points where the hBN film reaches the highest curvature. Through the control of pillar geometry we demonstrate an average of ~ 2 emitters per site for the smallest pillars (75nm diameter). These findings set the stage for realizing arrays of room temperature single photon sources through the combined control of strain and external electrostatic potentials.

Cite this collection

Menon, Vinod; Meriles, Carlos; Proscia, Nicholas; Shotan, Zav; Jayakumar, Harishankar; Alkauskas, Audrius; et al. (2018): Near-deterministic activation of room temperature quantum emitters in hexagonal boron nitride. The Optical Society. Collection.