figshare
Browse

Model for Interpreting Surface Crystallization Using Quartz Crystal Microbalance: Theory and Experiments

Version 2 2016-04-27, 13:51
Version 1 2016-04-14, 17:19
Posted on 2016-03-30 - 00:00
Surface crystallization of calcium sulfate was investigated using a dissipation crystal quartz microbalance (QCM-D) together with microscopy to understand the mechanical property changes occurring during the growth process. The use of optical microscopy and SEM revealed that needle-shaped crystals grow as clusters on the QCM sensor’s surface, not in uniform layers. As crystallization growth progressed, QCM-D revealed inversions between negative and positive frequency shifts. This behavior, a function of the growth of crystals in clusters, is not adequately predicted by existing models. As such, a new mass-to-frequency conversion model is proposed herein to explain the observed frequency inversions. This model is derived from a lumped element approach with point-contact loading and Mason equivalent circuit theory. Critically, the physical phenomena occurring form the basis of the model, particularly addressing the three sources of impedance. When a crystal nucleates and grows, its inertial impedance is considered along with a Kelvin–Voigt link with a hydration layer. A comparison between the proposed model and experimental data, of both frequency and dissipation data for the first four harmonics, shows good agreement for the supersaturations (S = C/C*) of S = 3.75, S = 3.48, and S = 3.22. Additionally, significant improvements over existing models for the case of surface crystallization are observed. The proposed model was therefore able to explain that frequency inversions are caused by a shift from inertia-dominated to elastic-dominated impedance, occurring as a result of crystal growth. Using the nucleation induction time and nucleation rates, determined with imaging, an additional understanding of the crystals’ mechanical properties (stiffness and dampening) was obtained.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?