figshare
Browse

Mild Hydrothermal Synthesis of the Complex Hafnium-Containing Fluorides Cs2[M(H2O)6][Hf2F12] (M = Ni, Co, Zn), CuHfF6(H2O)4, and Cs2Hf3Mn3F20 Based on HfF7 and HfF6 Coordination Polyhedra

Version 2 2019-09-16, 15:13
Version 1 2019-09-16, 15:09
Posted on 2019-09-16 - 15:13
A series of new Hf­(IV)-containing fluorides with three different compositions, Cs2[M­(H2O)6]­[Hf2F12] (M = Ni, Co, Zn), CuHfF6(H2O)4, and Cs2Hf3Mn3F20, were synthesized as high-quality single crystals via a mild hydrothermal route. The compounds with compositions of Cs2[M­(H2O)6]­[Hf2F12] (M = Ni, Co, Zn) and CuHfF6(H2O)4 crystallize in the monoclinic space groups P21/n and P21/c, respectively, while the Cs2Hf3Mn3F20 phase crystallizes in the orthorhombic space group Pmmn. Cs2[M­(H2O)6]­[Hf2F12] (M = Ni, Co, Zn) exhibits a complex three-dimensional (3D) crystal structure consisting of edge-sharing dimers of HfF7 polyhedra, which are linked to the divalent metal octahedra via hydrogen bonding. Cs2Hf3Mn3F20 features corner-sharing HfF7 and MnF7 dimers as well as isolated MnF6 octahedra, while the CuHfF6(H2O)4 phase exhibits a 3D structure that consists of HfF6 octahedra linked with neighboring copper octahedral units by hydrogen-bonding interactions. UV–vis spectra of the title compounds were collected and exhibit absorption bands due to electronic transitions in the divalent metal cations (Ni2+, Co2+, Cu2+, and Mn2+). Magnetic susceptibility measurements revealed paramagnetic behavior in the compounds containing the magnetic cations Ni, Co, Cu, and Mn.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?