figshare
Browse

Micelle Formation in Alkyl Sulfate Surfactants Using Dissipative Particle Dynamics

Version 2 2018-04-13, 20:09
Version 1 2018-04-13, 20:04
Posted on 2018-04-13 - 20:09
We use dissipative particle dynamics (DPD) to study micelle formation in alkyl sulfate surfactants, with alkyl chain lengths ranging from 6 to 12 carbon atoms. We extend our recent DPD force field [J. Chem. Phys. 2017, 147, 094503] to include a charged sulfate chemical group and aqueous sodium ions. With this model, we achieve good agreement with the experimentally reported critical micelle concentrations (CMCs) and can match the trend in mean aggregation numbers versus alkyl chain length. We determine the CMC by fitting a charged pseudophase model to the dependence of the free surfactant on the total surfactant concentration above the CMC and compare it with a direct operational definition of the CMC as the point at which half of the surfactant is classed as micellar and half as monomers and submicellar aggregates. We find that the latter provides the best agreement with experimental results. Finally, with the same model, we are able to observe the sphere-to-rod morphological transition for sodium dodecyl sulfate (SDS) micelles and determine that it corresponds to SDS concentrations in the region of 300–500 mM.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?