figshare
Browse

Investigation of Isomeric Transformations of Chlorogenic Acid in Buffers and Biological Matrixes by Ultraperformance Liquid Chromatography Coupled with Hybrid Quadrupole/Ion Mobility/Orthogonal Acceleration Time-of-Flight Mass Spectrometry

Posted on 2011-10-26 - 00:00
Ultraperformance liquid chromatography coupled with hybrid quadrupole/ion mobility/orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (UPLC-IM-MS) was used to study the isomeric transformations of trans-5-caffeoylquinic acid, an extremely active compound present in multiple vegetables, fruits, and beverages. The UPLC/oa-TOF MS results proved that in phosphate buffer (pH 7.4), plasma, or urine sample, trans-5-caffeoylquinic acid first isomerizes to trans-4-caffeoylquinic acid and then to trans-3-caffeoylquinic acid by intramolecular acyl migration. When exposed to UV light, trans-3-, -4-, and -5-caffeoylquinic acids undergo cis/trans isomerization to form cis isomers. The isomerization was solely dependent on the pH of the matrix, as well as the incubation temperature, and was independent of metabolic enzymes. UPLC-IM-MS results revealed that a reversible cis/trans isomerization of caffeoylquinic acids could also be induced by the electric field in an electrospray source. Thus, understanding the possible role of electric field-induced isomerization of caffeoylquinic acids may help lessen the confusion between gas phase phenomena and liquid state chemistry when applying IM-MS analysis. The comprehensive understanding of caffeoylquinic acid isomerization transformations is crucial for the appropriate handling of samples and interpretation of experimental data.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?