figshare
Browse

Integrated genome-wide investigations of the housefly, a global vector of diseases reveal unique dispersal patterns and bacterial communities across farms

Posted on 2020-01-22 - 08:37
Abstract Background Houseflies (Musca domestica L.) live in intimate association with numerous microorganisms and is a vector of human pathogens. In temperate areas, houseflies will overwinter in environments constructed by humans and recolonize surrounding areas in early summer. However, the dispersal patterns and associated bacteria across season and location are unclear. We used genotyping-by-sequencing (GBS) for the simultaneous identification and genotyping of thousands of Single Nucleotide Polymorphisms (SNPs) to establish dispersal patterns of houseflies across farms. Secondly, we used 16S rRNA gene amplicon sequencing to establish the variation and association between bacterial communities and the housefly across farms. Results Using GBS we identified 18,000 SNPs across 400 individuals sampled within and between 11 dairy farms in Denmark. There was evidence for sub-structuring of Danish housefly populations and with genetic structure that differed across season and sex. Further, there was a strong isolation by distance (IBD) effect, but with large variation suggesting that other hidden geographic barriers are important. Large individual variations were observed in the community structure of the microbiome and it was found to be dependent on location, sex, and collection time. Furthermore, the relative prevalence of putative pathogens was highly dependent on location and collection time. Conclusion We were able to identify SNPs for the determination of the spatiotemporal housefly genetic structure, and to establish the variation and association between bacterial communities and the housefly across farms using novel next-generation sequencing (NGS) techniques. These results are important for disease prevention given the fine-scale population structure and IBD for the housefly, and that individual houseflies carry location specific bacteria including putative pathogens.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?