figshare
Browse

In Situ Methylene Capping: A General Strategy for Efficient Stereoretentive Catalytic Olefin Metathesis. The Concept, Methodological Implications, and Applications to Synthesis of Biologically Active Compounds

Posted on 2017-07-27 - 18:24
In situ methylene capping is introduced as a practical and broadly applicable strategy that can expand the scope of catalyst-controlled stereoselective olefin metathesis considerably. By incorporation of commercially available Z-butene together with robust and readily accessible Ru-based dithiolate catalysts developed in these laboratories, a large variety of transformations can be made to proceed with terminal alkenes, without the need for a priori synthesis of a stereochemically defined disubstituted olefin. Reactions thus proceed with significantly higher efficiency and Z selectivity as compared to when other Ru-, Mo-, or W-based complexes are utilized. Cross-metathesis with olefins that contain a carboxylic acid, an aldehyde, an allylic alcohol, an aryl olefin, an α substituent, or amino acid residues was carried out to generate the desired products in 47–88% yield and 90:10 to >98:2 Z:E selectivity. Transformations were equally efficient and stereoselective with a ∼70:30 Z-:E-butene mixture, which is a byproduct of crude oil cracking. The in situ methylene capping strategy was used with the same Ru catechothiolate complex (no catalyst modification necessary) to perform ring-closing metathesis reactions, generating 14- to 21-membered ring macrocyclic alkenes in 40–70% yield and 96:4–98:2 Z:E selectivity; here too, reactions were more efficient and Z-selective than when the other catalyst classes are employed. The utility of the approach is highlighted by applications to efficient and stereoselective syntheses of several biologically active molecules. This includes a platelet aggregate inhibitor and two members of the prostaglandin family of compounds by catalytic cross-metathesis reactions, and a strained 14-membered ring stapled peptide by means of macrocyclic ring-closing metathesis. The approach presented herein is likely to have a notable effect on broadening the scope of olefin metathesis, as the stability of methylidene complexes is a generally debilitating issue with all types of catalyst systems. Illustrative examples of kinetically controlled E-selective cross-metathesis and macrocyclic ring-closing reactions, where E-butene serves as the methylene capping agent, are provided.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?