figshare
Browse

Hierarchical Nanoporous V2O3 Nanosheets Anchored with Alloy Nanoparticles for Efficient Electrocatalysis

Posted on 2019-10-09 - 16:44
Exploring low-cost bifunctional electrocatalysts for efficient water splitting still faces arduous challenges. Herein, a general and straightforward method is developed to prepare 3D hierarchical nanoporous V2O3 nanosheets anchored with different alloy nanoparticles by adopting metal-ion-doped zinc–vanadium (oxy)­hydroxides as precursors. To demonstrate this concept, we produced nanoporous V2O3 nanosheets dotted with NiFe alloy nanoparticles through high-temperature reduction and free corrosion. Due to the increased number of active sites, accelerated mass transfer originating from the designed nanoporous architecture, and the metallic property of the V2O3 matrix, the NiFe@V2O3 hybrid exhibits excellent electrocatalytic performances for both oxygen and hydrogen evolution reactions. When adopting the NiFe@V2O3 as a bifunctional electrode for overall water splitting, it only requires a cell voltage of 1.56 V to reach 10 mA cm–2. This work provides a general and practical way to prepare high-efficient and low-cost electrocatalysts.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?