Genetic deficiency of Wnt5a diminishes disease severity in a murine model of rheumatoid arthritis

Posted on 2017-07-19 - 05:00
Abstract Background Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation of the joints, leading to bone erosion and joint dysfunction. Despite the recent successes of disease-modifying anti-rheumatic drugs (DMARDs), there is still clinical need for understanding the development and molecular etiology of RA. Wnts are developmental morphogens whose roles in adult pathology are poorly characterized. Wnt5a is a member of the non-canonical family of Wnts that modulates a wide range of cell processes, including differentiation, migration, and inflammation. Wnt5a has been implicated as a possible contributor to arthritis and it is upregulated in synovial fibroblasts from RA patients. Methods We investigated the role of endogenous Wnt5a in RA. Tamoxifen-inducible, Wnt5a knockout (Wnt5a cKO) mice and littermate controls were monitored for arthritis development and joint pathology using the K/BxN serum transfer-induced arthritis (STIA) model. To explore a role of Wnt5a in osteoclast fusion, bone marrow-derived monocytes (BMDMs) were differentiated in vitro. Results Wnt5a cKO mice were resistant to arthritis development compared to control littermates as assessed by ankle thickness and histologic measurements. Some parameters of inflammation were reduced in the Wnt5a cKO mice, including the extent of polymononuclear cell infiltration and extra-articular inflammation. Wnt5a cKO mice also exhibited less cartilage destruction and a reduction in osteoclast activity with concomitant reduction in tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), macrophage colony-stimulating factor (MCSF), matrix metalloproteinase (MMP)2 and MMP9 in the arthritic joints. Treatment of BMDMs with Wnt5a enhanced osteoclast fusion and increased the expression of dendrocyte-expressed seven transmembrane protein (DCSTAMP) and MMP9, that are necessary for osteoclast formation and activity. Conclusions These data suggest that Wnt5a modulates the development of arthritis by promoting inflammation and osteoclast fusion, and provide the first mouse genetic evidence of a role for endogenous Wnt5a in autoimmune disease.


3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
AAPG Bulletin
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
Select your citation style and then place your mouse over the citation text to select it.



Usage metrics

Arthritis Research & Therapy


Susan MacLauchlan
Maria Zuriaga
JosĂŠ Fuster
Carla Cuda
Jennifer Jonason
Fernanda Behzadi
Jennifer Duffen
G. Haines
Tamar Aprahamian
Harris Perlman
Kenneth Walsh
need help?