figshare
Browse

General Route to High Surface Area Covalent Organic Frameworks and Their Metal Oxide Composites as Magnetically Recoverable Adsorbents and for Energy Storage

Posted on 2017-12-07 - 20:04
Two-dimensional (2D) imine-linked covalent organic frameworks (COFs) have attracted great interest for gas uptake, catalysis, drug delivery, electronic devices, and photocatalytic applications. The synthetic methodologies involved in imine-linked COF formations such as solvothermal synthesis usually require harsh experimental conditions. In this work, we show for the first time how highly crystalline COFs with very high surface areas (3.6 times higher than using conventional approaches) can be prepared by combining a mechanochemical and crystallization approach. More importantly, this facile method is a general route to novel composites of COF and metal oxides including Fe3O4, Co3O4, and NiO. The composites can be used as magnetically recoverable adsorbents and show a strong redox-activity making them interesting for applications in electrochemical energy storage.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?