figshare
Browse

Facile Synthesis of Fluorescent Conjugated Polyelectrolytes Using Polydentate Sulfonate as Highly Selective and Sensitive Copper(II) Sensors

Version 3 2018-02-10, 00:33
Version 2 2017-10-17, 19:00
Version 1 2017-08-23, 16:43
Posted on 2018-02-10 - 00:33
Fluorescent conjugated polyelectrolytes represent an exciting area of research into new chemosensors. By virtue of their rapid electron and energy transfer paths, these highly correlated, one-dimensional systems have been depicted as “molecular wires” and show “million-fold” sensitivity compared to monomolecular sensor analogs. In this paper, a novel polyelectrolyte sensor, the ttp-PPESO3, has been designed by incorporating terpyridine and sulfonate functional groups into the polyelectrolyte. This specifically tailored sensor has displayed remarkable quenching response toward copper­(II) with a detection limit of 14.7 nM (0.93 ppb). It is capable of selectively screening copper without interference from 12 common cations. Molecular modeling suggests that binding occurs through a coordination interaction of the terpyridine and sulfonate. The additional multidentate nature from the sulfonate offers extraordinary chelating ability to the analyte. We anticipate that this unique binding mode will provide insight for the design of future more sensitive and selective systems.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?