figshare
Browse

Exploring the Influence of Diamagnetic Ions on the Mechanism of Magnetization Relaxation in {CoIII2LnIII2} (Ln = Dy, Tb, Ho) “Butterfly” Complexes

Posted on 2017-02-17 - 15:54
The synthesis and magnetic and theoretical studies of three isostructural heterometallic [CoIII2LnIII23-OH)2(o-tol)4(mdea)2(NO3)2] (Ln = Dy (1), Tb (2), Ho (3)) “butterfly” complexes are reported (o-tol = o-toluate, (mdea)2– = doubly deprotonated N-methyldiethanolamine). The CoIII ions are diamagnetic in these complexes. Analysis of the dc magnetic susceptibility measurements reveal antiferromagnetic exchange coupling between the two LnIII ions for all three complexes. ac magnetic susceptibility measurements reveal single-molecule magnet (SMM) behavior for complex 1, in the absence of an external magnetic field, with an anisotropy barrier Ueff of 81.2 cm–1, while complexes 2 and 3 exhibit field induced SMM behavior, with a Ueff value of 34.2 cm–1 for 2. The barrier height for 3 could not be quantified. To understand the experimental observations, we performed DFT and ab initio CASSCF+RASSI-SO calculations to probe the single-ion properties and the nature and magnitude of the LnIII–LnIII magnetic coupling and to develop an understanding of the role the diamagnetic CoIII ion plays in the magnetization relaxation. The calculations were able to rationalize the experimental relaxation data for all complexes and strongly suggest that the CoIII ion is integral to the observation of SMM behavior in these systems. Thus, we explored further the effect that the diamagnetic CoIII ions have on the magnetization blocking of 1. We did this by modeling a dinuclear {DyIII2} complex (1a), with the removal of the diamagnetic ions, and three complexes of the types {KI2DyIII2} (1b), {ZnII2DyIII2} (1c), and {TiIV2DyIII2} (1d), each containing a different diamagnetic ion. We found that the presence of the diamagnetic ions results in larger negative charges on the bridging hydroxides (1b > 1c > 1 > 1d), in comparison to 1a (no diamagnetic ion), which reduces quantum tunneling of magnetization effects, allowing for more desirable SMM characteristics. The results indicate very strong dependence of diamagnetic ions in the magnetization blocking and the magnitude of the energy barriers. Here we propose a synthetic strategy to enhance the energy barrier in lanthanide-based SMMs by incorporating s- and d-block diamagnetic ions. The presented strategy is likely to have implications beyond the single-molecule magnets studied here.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?