figshare
Browse

Enhanced Thermal Buffering of Phase Change Materials by the Intramicrocapsule Sub per Mille CNT Dopant

Posted on 2020-03-26 - 09:13
Microencapsulation of a carbon nanotube (CNT)-loaded paraffin phase change material, PCM in a poly­(melamine-formaldehyde) shell, and the respective CNT-PCM gypsum composites is explored. Although a very low level (0.001–0.1 wt %) of intramicrocapsule loading of CNT dopant does not change the thermal conductivity of the solid, it increases the measured effusivity and thermal buffering performance during phase transition. The observed effusivity of 0.05 wt % CNT-doped PCM reaches 4000 W s–0.5 m–2 K–1, which is higher than the reported effusivity of alumina and alumina bricks and an order of magnitude larger than the solid, CNT-free PCM powder. The CNT dopant (0.015 wt %) in a 30 wt % PCM-plaster composite improved the effusivity by 60% compared to the CNT-free composite, whereas the addition of the same amount of CNTs to the bulk of the plaster does not improve either the effusivity or the thermal buffering performance of the composite. The thermal enhancement is ascribed to a CNT network formation within the paraffin core.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?