figshare
Browse

Engineering Surface-Adaptive Metal–Organic Framework Armor to Promote Infected Wound Healing

Posted on 2024-12-18 - 02:03
Metal–organic frameworks (MOFs) hold enormous promise for treating bacterial infections to circumvent the threat of antibiotic resistance. However, positioning MOFs on wound dressings is hindered and remains a significant challenge. Herein, a facile heterointerfacial engineering strategy was developed to tailor the “MOF armor” that adaptively weaponized the poly(ε-caprolactone) electrospun dressing with excellent bacteria-killing efficacy. Hydrophilic epitaxial crystallization to enhance the interfacial wettability is the key to induce the uniform seeding of Cu2+ and thus to generate a compact MOF layer on the electrospun dressing. The universality of the proposed strategy was demonstrated by the construction of different kinds of MOFs (HKUST-1, ZIF-8, and ZIF-67) on variously shaped substrates (nanofibers, pellets, plates, and 3D-printed porous scaffolds). By optimizing the Cu2+ loading, the Cu-MOF armor exhibited sustained ion release behavior, strong antibacterial activity, and good biocompatibility. In vivo rat model revealed that the Cu-MOF armor significantly promoted infected wound healing by inhibiting inflammatory factors, promoting collagen deposition, and angiogenesis. This unique MOF armor provides an appealing and effective solution for designing and fabricating advanced wound dressings.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?