figshare
Browse

Electron Localization in Rationally Designed Pt1Pd Single-Atom Alloy Catalyst Enables High-Performance Li–O2 Batteries

Posted on 2024-01-18 - 19:46
Li–O2 batteries (LOBs) are considered as one of the most promising energy storage devices due to their ultrahigh theoretical energy density, yet they face the critical issues of sluggish cathode redox kinetics during the discharge and charge processes. Here we report a direct synthetic strategy to fabricate a single-atom alloy catalyst in which single-atom Pt is precisely dispersed in ultrathin Pd hexagonal nanoplates (Pt1Pd). The LOB with the Pt1Pd cathode demonstrates an ultralow overpotential of 0.69 V at 0.5 A g–1 and negligible activity loss over 600 h. Density functional theory calculations show that Pt1Pd can promote the activation of the O2/Li2O2 redox couple due to the electron localization caused by the single Pt atom, thereby lowering the energy barriers for the oxygen reduction and oxygen evolution reactions. Our strategy for designing single-atom alloy cathodic catalysts can address the sluggish oxygen redox kinetics in LOBs and other energy storage/conversion devices.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?