figshare
Browse

Electroforming-Free Bipolar Resistive Switching in GeSe Thin Films with a Ti-Containing Electrode

Posted on 2019-10-09 - 16:39
Chalcogenide materials have been regarded as strong candidates for both resistor and selector elements in passive crossbar arrays owing to their dual capabilities of undergoing threshold and resistance switching. This work describes the bipolar resistive switching (BRS) of amorphous GeSe thin films, which used to show Ovonic threshold switching (OTS) behavior. The behavior of this new functionality of the material follows filament-based resistance switching when Ti and TiN are adopted as the top and bottom electrodes, respectively. The detailed analysis revealed that the high chemical affinity of Ti to Se produces a Se-deficient GexSe1–x matrix and the interfacial Ti–Se layer. Electroforming-free BRS behavior with reliable retention and cycling endurance was achieved. The performance improvement was attributed to the Ti–Se interfacial layer, which stabilizes the composition of GeSe during the electrical switching cycles by preventing further massive Se migration to the top electrode. The conduction mechanism analysis denotes that the resistance switching originates from the formation and rupture of the high-conductance semiconducting Ge-rich GexSe1–x filament. The high-resistance state follows the modified Poole–Frenkel conduction.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?