figshare
Browse

Effect of Infrared Pulse Excitation on the Bound Charge-Transfer State of Photovoltaic Interfaces

Version 2 2017-09-25, 13:24
Version 1 2017-09-25, 13:19
Posted on 2017-09-25 - 13:24
The nature and dynamics of the bound charge-transfer (CT) state in the exciton dissociation process in organic solar cells are of critical importance for the understanding of these devices. It was recently demonstrated that this state can be probed by a new experiment in which an infrared (IR) push-pulse is used to dissociate charges from the bound excited state. Here we proposed a simple quantum dynamics model to simulate the excitation of the IR pulse on the bound CT state with model parameters extracted from quantum chemical calculations. We show that the pulse dissociates the CT state following two different mechanisms: one, fairly expected, is the direct excitation of higher energy CT states leading to charge separation; the other, proposed here for the first time, is a rebound mechanism in which the negative charge is transferred in the opposite direction to form the neutral Frenkel exciton state from where it dissociates.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?