figshare
Browse

Dynamics of microparticles trapped in a perfect vortex beam

Posted on 2017-04-26 - 18:18
We analyze microparticle dynamics within a “perfect” vortex beam. In contrast to other vortex fields, for any given integer value of the topological charge, a “perfect” vortex beam has the same annular intensity profile with fixed radius of peak intensity. For a given topological charge, the field possesses a well-defined orbital angular momentum density at each point in space, invariant with respect to azimuthal position. We experimentally create a perfect vortex and correct the field in situ, to trap and set in motion trapped microscopic particles. For a given topological charge, a single trapped particle exhibits the same local angular velocity moving in such a field independent of its azimuthal position. We also investigate particle dynamics in “perfect” vortex beams of fractional topological charge. This light field may be applied for novel studies in optical trapping of particles, atoms, and quantum gases.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?