figshare
Browse

Discovery of a Phage Peptide Specifically Binding to the SARS-CoV‑2 Spike S1 Protein for the Sensitive Phage-Based Enzyme-Linked Chemiluminescence Immunoassay of the SARS-CoV‑2 Antigen

Posted on 2022-08-10 - 23:40
The COVID-19 pandemic has led to a global crisis with devastating effects on public healthcare and the economy. Sensitive detection of SARS-CoV-2 is the key to diagnose and control its spread. The spike (S) protein is an abundant viral transmembrane protein and a suitable target protein for the selective recognition of SARS-CoV-2. Here, we report that with bovine serum albumin prescreening, a specific phage peptide targeting SARS-CoV-2 S1 protein was biopanned with the pIII phage display library. The identified phage #2 expressing the peptide (amino acid sequence: NFWISPKLAFAL) shows high affinity to the target with a dissociation constant of 3.45 ± 0.58 nM. Furthermore, the identified peptide shows good specificity with a binding site at the N-terminal domain of the S1 subunit through a hydrogen bond network and hydrophobic interaction, supported by molecular docking. Then, a sandwiched phage-based enzyme-linked chemiluminescence immunoassay (ELCLIA) was established by using phage #2 as a bifunctional probe capable of SARS-CoV-2 S1 antigen recognition and signal amplification. After optimizing the conditions, the proposed phage ELCLIA exhibited good sensitivity, and as low as 78 pg/mL SARS-CoV-2 S1 could be detected. This method can be applied to detect as low as 60 transducing units (TU)/mL SARS-CoV-2 pseudovirus in 50% saliva. Therefore, specific phage peptides have good prospects as powerful biological recognition probes for immunoassay detection and biomedical applications.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?