figshare
Browse

Development of Excipient-Free Freeze-Dryable Unimolecular Hyperstar Polymers for Efficient siRNA Silencing

Version 2 2017-06-19, 19:05
Version 1 2017-06-19, 13:05
Posted on 2017-06-19 - 19:05
We designed a unimolecular hyperstar polymer for efficient small interfering RNA (siRNA) delivery that can be processed under repeated lyophilization and reconstitution without the need of any excipient. The hyperstar polymer contains a biodegradable hyperbranched core and is bound to siRNA through its thousands of cationic arms that radiate from its core. The siRNA/hyperstar complexes showed siRNA transfection efficiency that was superior to that of Lipofectamine2000 in regard to the gene for human Cu, Zn superoxide dismutase 1 (SOD1), whose mutation causes familial amyotrophic lateral sclerosis. More importantly, hyperstar polymers as unimolecular containers minimized the multipolymer cross-interaction during lyophilization, and this maintained the uniquely high transfection efficiency of the siRNA/hyperstar complexes after repeated freeze-drying and reconstitution without the conventional need for excipient.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?