figshare
Browse

Design of binary phase filters for depth-of-focus extension via binarization of axisymmetric aberrations

Posted on 2017-11-17 - 16:28
We present a holistic design approach for a binary phase mask with depth-of-focus (DoF) extension ability. Our method considers that the binarized version of axisymmetric continuous phase pupil generates twin-intensity profiles that are symmetric with respect to the focal plane, each of which resembles the focal behavior of its continuous original. The DoF extension is realized by repositioning and coherently summing the twin foci to achieve an elongated focus along the axial direction. The shift of the two foci towards the focal plane can be handled by superimposing the defocus term in the continuous pupil function. We demonstrate our proposed design approach for two representative axisymmetric aberration functions, i.e., defocused phase axicon and spherical aberration. The manipulation of topological parameters in the phase axicon and spherical aberration, along with the defocus strength, enable the multiple binary phase-filter designs of DoF extension of 2–4 fold with a phase axicon and 2–7.5 fold with a spherical aberration, compared to the case with a clear aperture.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?