figshare
Browse

Data from GFPT2-Expressing Cancer-Associated Fibroblasts Mediate Metabolic Reprogramming in Human Lung Adenocarcinoma

Posted on 2023-03-31 - 02:01
Abstract

Metabolic reprogramming of the tumor microenvironment is recognized as a cancer hallmark. To identify new molecular processes associated with tumor metabolism, we analyzed the transcriptome of bulk and flow-sorted human primary non–small cell lung cancer (NSCLC) together with 18FDG-PET scans, which provide a clinical measure of glucose uptake. Tumors with higher glucose uptake were functionally enriched for molecular processes associated with invasion in adenocarcinoma and cell growth in squamous cell carcinoma (SCC). Next, we identified genes correlated to glucose uptake that were predominately overexpressed in a single cell–type comprising the tumor microenvironment. For SCC, most of these genes were expressed by malignant cells, whereas in adenocarcinoma, they were predominately expressed by stromal cells, particularly cancer-associated fibroblasts (CAF). Among these adenocarcinoma genes correlated to glucose uptake, we focused on glutamine-fructose-6-phosphate transaminase 2 (GFPT2), which codes for the glutamine-fructose-6-phosphate aminotransferase 2 (GFAT2), a rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP), which is responsible for glycosylation. GFPT2 was predictive of glucose uptake independent of GLUT1, the primary glucose transporter, and was prognostically significant at both gene and protein level. We confirmed that normal fibroblasts transformed to CAF-like cells, following TGFβ treatment, upregulated HBP genes, including GFPT2, with less change in genes driving glycolysis, pentose phosphate pathway, and TCA cycle. Our work provides new evidence of histology-specific tumor stromal properties associated with glucose uptake in NSCLC and identifies GFPT2 as a critical regulator of tumor metabolic reprogramming in adenocarcinoma.

Significance: These findings implicate the hexosamine biosynthesis pathway as a potential new therapeutic target in lung adenocarcinoma. Cancer Res; 78(13); 3445–57. ©2018 AACR.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

FUNDING

NIH

SHARE

email

Usage metrics

Cancer Research

AUTHORS (16)

  • Weiruo Zhang
    Gina Bouchard
    Alice Yu
    Majid Shafiq
    Mehran Jamali
    Joseph B. Shrager
    Kelsey Ayers
    Shaimaa Bakr
    Andrew J. Gentles
    Maximilian Diehn
    Andrew Quon
    Robert B. West
    Viswam Nair
    Matt van de Rijn
    Sandy Napel
    Sylvia K. Plevritis
need help?