figshare
Browse

Data from The Alkylating Chemotherapeutic Temozolomide Induces Metabolic Stress in IDH1-Mutant Cancers and Potentiates NAD+ Depletion–Mediated Cytotoxicity

Posted on 2023-03-31 - 00:43
Abstract

IDH1-mutant gliomas are dependent upon the canonical coenzyme NAD+ for survival. It is known that PARP activation consumes NAD+ during base excision repair (BER) of chemotherapy-induced DNA damage. We therefore hypothesized that a strategy combining NAD+ biosynthesis inhibitors with the alkylating chemotherapeutic agent temozolomide could potentiate NAD+ depletion–mediated cytotoxicity in mutant IDH1 cancer cells. To investigate the impact of temozolomide on NAD+ metabolism, patient-derived xenografts and engineered mutant IDH1-expressing cell lines were exposed to temozolomide, in vitro and in vivo, both alone and in combination with nicotinamide phosphoribosyltransferase (NAMPT) inhibitors, which block NAD+ biosynthesis. The acute time period (<3 hours) after temozolomide treatment displayed a burst of NAD+ consumption driven by PARP activation. In IDH1-mutant–expressing cells, this consumption reduced further the abnormally lowered basal steady-state levels of NAD+, introducing a window of hypervulnerability to NAD+ biosynthesis inhibitors. This effect was selective for IDH1-mutant cells and independent of methylguanine methyltransferase or mismatch repair status, which are known rate-limiting mediators of adjuvant temozolomide genotoxic sensitivity. Combined temozolomide and NAMPT inhibition in an in vivo IDH1-mutant cancer model exhibited enhanced efficacy compared with each agent alone. Thus, we find IDH1-mutant cancers have distinct metabolic stress responses to chemotherapy-induced DNA damage and that combination regimens targeting nonredundant NAD+ pathways yield potent anticancer efficacy in vivo. Such targeting of convergent metabolic pathways in genetically selected cancers could minimize treatment toxicity and improve durability of response to therapy. Cancer Res; 77(15); 4102–15. ©2017 AACR.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

FUNDING

NIH

Yokohama Academic Foundation

Society of Nuclear Medicine and Molecular Imaging

SHARE

email

Usage metrics

Cancer Research

AUTHORS (13)

  • Kensuke Tateishi
    Fumi Higuchi
    Julie J. Miller
    Mara V.A. Koerner
    Nina Lelic
    Ganesh M. Shankar
    Shota Tanaka
    David E. Fisher
    Tracy T. Batchelor
    A. John Iafrate
    Hiroaki Wakimoto
    Andrew S. Chi
    Daniel P. Cahill
need help?