figshare
Browse

Data from Tankyrase and the Canonical Wnt Pathway Protect Lung Cancer Cells from EGFR Inhibition

Posted on 2023-03-30 - 21:00
Abstract

Lung cancer is the leading cause of death worldwide. Adenocarcinomas, the most common histologic subtype of non-small cell lung cancer (NSCLC), are frequently associated with activating mutations in the epidermal growth factor receptor (EGFR) gene. Although these patients often respond clinically to the EGFR tyrosine kinase inhibitors erlotinib and gefitinib, relapse inevitably occurs, suggesting the development of escape mechanisms that promote cell survival. Using a loss-of-function, whole genome short hairpin RNA (shRNA) screen, we identified that the canonical Wnt pathway contributes to the maintenance of NSCLC cells during EGFR inhibition, particularly the poly-ADP-ribosylating enzymes tankyrase 1 and 2 that positively regulate canonical Wnt signaling. Inhibition of tankyrase and various other components of the Wnt pathway with shRNAs or small molecules significantly increased the efficacy of EGFR inhibitors both in vitro and in vivo. Our findings therefore reveal a critical role for tankyrase and the canonical Wnt pathway in maintaining lung cancer cells during EGFR inhibition. Targeting the Wnt-tankyrase-β-catenin pathway together with EGFR inhibition may improve clinical outcome in patients with NSCLC. Cancer Res; 72(16); 4154–64. ©2012 AACR.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Cancer Research

AUTHORS (11)

  • Matias Casás-Selves
    Jihye Kim
    Zhiyong Zhang
    Barbara A. Helfrich
    Dexiang Gao
    Christopher C. Porter
    Hannah A. Scarborough
    Paul A. Bunn
    Daniel C. Chan
    Aik Choon Tan
    James DeGregori
need help?