figshare
Browse

Data from LX1 Dual Targets AR Variants and AKR1C3 in Advanced Prostate Cancer Therapy

Posted on 2024-11-04 - 08:40
Abstract

The development of resistance to current standard-of-care treatments, such as androgen receptor (AR) targeting therapies, remains a major challenge in the management of advanced prostate cancer. There is an urgent need for new therapeutic strategies targeting key resistant drivers, such as AR variants like AR-V7, and steroidogenic enzymes, such as aldo–keto reductase 1C3 (AKR1C3), to overcome drug resistance and improve outcomes for patients with advanced prostate cancer. Here, we have designed, synthesized, and characterized a novel class of LX compounds targeting both the AR/AR variants and AKR1C3 pathways. Molecular docking and in vitro studies demonstrated that LX compounds bind to the AKR1C3 active sites and inhibit AKR1C3 enzymatic activity. LX compounds were also shown to reduce AR/AR-V7 expression and to inhibit their target gene signaling. LX1 inhibited the conversion of androstenedione into testosterone in tumor-based ex vivo enzyme assays. In addition, LX1 inhibited the growth of cells resistant to antiandrogens including enzalutamide (Enza), abiraterone, apalutamide, and darolutamide in vitro. A synergistic effect was observed when LX1 was combined with antiandrogens and taxanes, indicating the potential for this combination in treating resistant prostate cancer. Treatment with LX1 significantly decreased tumor volume, serum PSA levels, as well as reduced intratumoral testosterone levels, without affecting mouse body weight. Furthermore, LX1 was found to overcome resistance to Enza treatment, and its combination with Enza further suppressed tumor growth in both the CWR22Rv1 xenograft and LuCaP35CR patient-derived xenograft models. Collectively, the dual effect of LX1 in reducing AR signaling and intratumoral testosterone, along with its synergy with standard therapies in resistant models, underscores its potential as a valuable treatment option for advanced prostate cancer.

Significance: LX1 simultaneously targets androgen receptor variants and the steroidogenic enzyme AKR1C3, offering a promising approach to combat drug resistance and enhancing therapeutic efficacy in conjunction with standard treatments for advanced prostate cancer.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

FUNDING

National Cancer Institute (NCI)

United States Department of Health and Human Services

U.S. Department of Veterans Affairs (VA)

SHARE

email

Usage metrics

Cancer Research

AUTHORS (20)

  • Shu Ning
    Cameron M. Armstrong
    Enming Xing
    Amy R. Leslie
    Richard Y. Gao
    Masuda Sharifi
    Zachary A. Schaaf
    Wei Lou
    Xiangrui Han
    Desiree H. Xu
    Rui Yang
    Jeffrey Cheng
    Shabber Mohammed
    Nicholas Mitsiades
    Chengfei Liu
    Alan P. Lombard
    Chun-Yi Wu
    Xiaolin Cheng
    Pui-Kai Li
    Allen C. Gao
need help?