figshare
Browse

Data from Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment

Posted on 2023-03-31 - 01:45
Abstract

Presence of cytotoxic CD8+ T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C12U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to ex vivo–treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB– and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity.

Significance: This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies. Cancer Res; 78(15); 4292–302. ©2018 AACR.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

FUNDING

NIH/NCI

NIH/NIAID

Deutsche Forschungsgemeinschaft

Rustum Family Foundation

SHARE

email

Usage metrics

Cancer Research

AUTHORS (13)

  • Marie-Nicole Theodoraki
    Saigopalakrishna Yerneni
    Saumendra N. Sarkar
    Brian Orr
    Ravikumar Muthuswamy
    Jamie Voyten
    Francesmary Modugno
    Weijian Jiang
    Melissa Grimm
    Per H. Basse
    David L. Bartlett
    Robert P. Edwards
    Pawel Kalinski
need help?