figshare
Browse

Data from Hedgehog and Notch Signaling Regulate Self-Renewal of Undifferentiated Pleomorphic Sarcomas

Posted on 2023-03-30 - 21:14
Abstract

Like many solid tumors, sarcomas are heterogeneous and include a small fraction of the so-called side population (SP) cells with stem-like tumor-initiating potential. Here, we report that SP cells from a soft tissue tumor of enigmatic origin termed undifferentiated pleomorphic sarcoma (also known as malignant fibrous histiocytoma or MFH sarcoma) display activation of both the Hedgehog and Notch pathways. Blockade to these pathways in murine xenograft models, this human cancer decreased the proportion of SP cells present and suppressed tumor self-renewal, as illustrated by the striking inability of xenograft tumors subjected to pathway blockade to be serially transplanted to new hosts. In contrast, conventional chemotherapies increased the proportion of SP cells present in tumor xenografts and did not affect their ability to be serially transplanted. SP cells from these tumors displayed an unexpectedly high proliferation rate which was selectively inhibited by Hedgehog and Notch blockade compared with conventional chemotherapies. Together, our findings deepen the concept that Hedgehog and Notch signaling are fundamental drivers of tumor self-renewal, acting in a small population of tumor-initiating cells present in tumors. Furthermore, our results suggest not only novel treatment strategies for deadly recurrent unresectable forms of this soft tumor subtype, but also potential insights into its etiology which has been historically controversial. Cancer Res; 72(4); 1013–22. ©2012 AACR.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Cancer Research

AUTHORS (13)

  • Chang Ye Yale Wang
    Qingxia Wei
    Ilkyu Han
    Shingo Sato
    Ronak Ghanbari- Azarnier
    Heather Whetstone
    Raymond Poon
    Jiayi Hu
    Feifei Zheng
    Phil Zhang
    Weishi Wang
    Jay S. Wunder
    Benjamin A. Alman
need help?