figshare
Browse

Data from Dual Role of Mitochondrial Reactive Oxygen Species in Hypoxia Signaling: Activation of Nuclear Factor-κB via c-SRC– and Oxidant-Dependent Cell Death

Posted on 2023-03-30 - 17:20
Abstract

Hypoxia is a prominent feature of solid tumor development and is known to stimulate mitochondrial ROS (mROS), which, in turn, can activate hypoxia-inducible transcription factor-1α and nuclear factor-κB (NF-κB). Because NF-κB plays a central role in carcinogenesis, we examined the mechanism of mROS-mediated NF-κB activation and the fate of cancer cells during hypoxia after mitochondrial reduced glutathione (mGSH) depletion. Hypoxia generated mROS in hepatoma (HepG2, H35), neuroblastoma (SH-SY5Y), and colon carcinoma (DLD-1) cells, leading to hypoxia-inducible transcription factor-1α–dependent gene expression and c-Src activation that was prevented in cells expressing a redox-insensitive c-Src mutant (C487A). c-Src stimulation activated NF-κB without IκB-α degradation due to IκB-α tyrosine phosphorylation that was inhibited by rotenone/TTFA or c-Src antagonism. The c-Src–NF-κB signaling contributed to the survival of cells during hypoxia as c-Src inhibition or p65 down-regulation by small interfering RNA–sensitized HepG2 cells to hypoxia-induced cell death. Moreover, selective mGSH depletion resulted in an accelerated and enhanced mROS generation by hypoxia that killed SH-SY5Y and DLD-1 cells without disabling the c-Src–NF-κB pathway. Thus, although mROS promote cell survival by NF-κB activation via c-Src, mROS overgeneration may be exploited to sensitize cancer cells to hypoxia. [Cancer Res 2007;67(15):7368–77]

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Cancer Research

AUTHORS (5)

  • Josep M. Lluis
    Francesca Buricchi
    Paola Chiarugi
    Albert Morales
    José C. Fernandez-Checa

CATEGORIES

KEYWORDS

need help?