figshare
Browse

Data from Bimodal Gene Expression in Patients with Cancer Provides Interpretable Biomarkers for Drug Sensitivity

Posted on 2023-03-31 - 05:26
Abstract

Identifying biomarkers predictive of cancer cell response to drug treatment constitutes one of the main challenges in precision oncology. Recent large-scale cancer pharmacogenomic studies have opened new avenues of research to develop predictive biomarkers by profiling thousands of human cancer cell lines at the molecular level and screening them with hundreds of approved drugs and experimental chemical compounds. Many studies have leveraged these data to build predictive models of response using various statistical and machine learning methods. However, a common pitfall to these methods is the lack of interpretability as to how they make predictions, hindering the clinical translation of these models. To alleviate this issue, we used the recent logic modeling approach to develop a new machine learning pipeline that explores the space of bimodally expressed genes in multiple large in vitro pharmacogenomic studies and builds multivariate, nonlinear, yet interpretable logic-based models predictive of drug response. The performance of this approach was showcased in a compendium of the three largest in vitro pharmacogenomic datasets to build robust and interpretable models for 101 drugs that span 17 drug classes with high validation rates in independent datasets. These results along with in vivo and clinical validation support a better translation of gene expression biomarkers between model systems using bimodal gene expression.

Significance:

A new machine learning pipeline exploits the bimodality of gene expression to provide a reliable set of candidate predictive biomarkers with a high potential for clinical translatability.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

FUNDING

Government of Ontario

SHARE

email

Usage metrics

Cancer Research

AUTHORS (8)

  • Wail Ba-Alawi
    Sisira Kadambat Nair
    Bo Li
    Anthony Mammoliti
    Petr Smirnov
    Arvind Singh Mer
    Linda Z. Penn
    Benjamin Haibe-Kains

CATEGORIES

KEYWORDS

need help?