figshare
Browse

Brønsted-Acid-Catalyzed Exchange in Polyester Dynamic Covalent Networks

Posted on 2018-06-22 - 17:24
The effect of catalyst strength on polyester–alcohol dynamic covalent exchange was systematically studied using Brønsted acids and a low-Tg poly­(4-methylcaprolactone) vitrimer formulation. Relaxation times, activation energies, and Arrhenius prefactors are correlated with pKa. Strong protic acids induce facile network relaxation at 25 °C on the order of 104–105 s, significantly faster than Lewis acid alternatives that function only above 100 °C. Activation energies span 49–67 kJ/mol and increase as pKa decreases. The opposite trend is observed with the Arrhenius prefactor. We anticipate that the quantitative understanding of Brønsted acid effects disclosed herein will be of utility in future studies that exploit acid-catalyzed dynamic covalent bond exchange.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?