figshare
Browse

Band-Gap Deformation Potential and Elasticity Limit of Semiconductor Free-Standing Nanorods Characterized in Situ by Scanning Electron Microscope–Cathodoluminescence Nanospectroscopy

Posted on 2015-03-24 - 00:00
Modern field-effect transistors or laser diodes take advantages of band-edge structures engineered by large uniaxial strain εzz, available up to an elasticity limit at a rate of band-gap deformation potential azz (= dEg/dεzz). However, contrary to aP values under hydrostatic pressure, there is no quantitative consensus on azz values under uniaxial tensile, compressive, and bending stress. This makes band-edge engineering inefficient. Here we propose SEM–cathodoluminescence nanospectroscopy under in situ nanomanipulation (Nanoprobe-CL). An apex of a c-axis-oriented free-standing ZnO nanorod (NR) is deflected by point-loading of bending stress, where local uniaxial strain (εcc = r/R) and its gradient across a NR (dεcc/dr = R–1) are controlled by a NR local curvature (R–1). The NR elasticity limit is evaluated sequentially (εcc = 0.04) from SEM observation of a NR bending deformation cycle. An electron beam is focused on several spots crossing a bent NR, and at each spot the local Eg is evaluated from near-band-edge CL emission energy. Uniaxial acc (= dEg/dεcc) is evaluated at regulated surface depth, and the impact of R–1 on observed acc is investigated. The acc converges with −1.7 eV to the R–1 = 0 limit, whereas it quenches with increasing R–1, which is attributed to free-exciton drift under transversal band-gap gradient. Surface-sensitive CL measurements suggest that a discrepancy from bulk acc = −4 eV may originate from strain relaxation at the side surface under uniaxial stress. The nanoprobe-CL technique reveals an Egij) response to specific strain tensor εij (i, j = x, y, z) and strain-gradient effects on a minority carrier population, enabling simulations and strain-dependent measurements of nanodevices with various structures.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?