figshare
Browse

Atomically Isolated Iron Atom Anchored on Carbon Nanotubes for Oxygen Reduction Reaction

Posted on 2019-10-20 - 19:13
Recently, electrocatalysts based on anchored dispersive/isolated single metal atoms on conductive carbon supports have demonstrated great promise to substitute costly Pt for the oxygen reduction reaction (ORR) in the field of fuel cells or metal-air batteries. However, developments of cost-efficient single-atom Fe catalysts with high activities are still facing various hardships. Here, we developed a facile way to synthesize isolated iron atoms anchored on the carbon nanotube (CNT) involving a one-pot pyrrole polymerization on a self-degraded organic template and a subsequent pyrolysis. The as-obtained electrocatalyst possessed unique characteristics of abundant nanopores in the wall of conductive CNTs to host the abundant atomic Fe-Nx active sites, showing ultrahigh ORR activity (half-wave potential: 0.93 V, kinetic current density: 59.8 mA/cm2 at 0.8 V), better than that of commercial Pt/C (half-wave potential: 0.91 V; kinetic current density: 38.0 mA/cm2 at 0.8 V) in an alkaline electrolyte. Furthermore, good ORR activity has been proven in acidic solution with a half-wave-potential of 0.73 V.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?