figshare
Browse

Anion Photoelectron Spectroscopy of Rubrene: Molecular Insights into Singlet Fission Energetics

Version 2 2017-09-14, 14:29
Version 1 2017-09-14, 14:23
Posted on 2017-09-14 - 14:29
Rubrene (C42H28, RUB) has been seen to be attractive as a promising building block for organic semiconductors. By means of gas-phase anion photoelectron spectroscopy, the adiabatic electron affinity for RUB molecules is determined to be 1.48 ± 0.03 eV, and the S0–T1 and S0–S1 transition energies of RUB are evaluated to be 1.16 ± 0.05 and 2.42 ± 0.05 eV, showing the possibility of singlet fission in terms of energy. The photoelectron spectra indicate that the vibronic coupling in RUB is similar in the neutral electronic states of S0, T1, and S1. Quantum chemistry calculation results demonstrate that the vibronic coupling in these states originates from their similarly restricted structural displacement upon photoexcitation. Molecular insights into energetics suggest the important role of a charge transfer state in singlet fission.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?