figshare
Browse

Actin Cytoskeleton-Disrupting and Magnetic Field-Responsive Multivalent Supramolecular Assemblies for Efficient Cancer Therapy

Posted on 2020-03-10 - 19:14
Actin cytoskeleton disruption is a promising and intriguing anticancer strategy, but their efficiency is frequently compromised by severe side effects of the actin cytoskeleton-disrupting agents. In this study, we constructed the biocompatible actin cytoskeleton-targeting multivalent supramolecular assemblies that specifically target and disrupt the tumor actin cytoskeleton for cancer therapy. The assemblies were composed of β-cyclodextrin-grafted hyaluronic acid (HACD) and iron oxide magnetic nanoparticles (MNPs) grafted by an actin-binding peptide (ABP) and adamantane (Ada)-modified polylysine. Owing to the multivalent binding between cyclodextrin and Ada, HACD, and peptide-grafted MNPs (MNP-ABP-Ada) could self-assemble to form MNP-ABP-Ada⊂HACD nanofibers in a geomagnetism-dependent manner. Furthermore, the presence of ABP rendered the assemblies to efficiently target the actin cytoskeleton. Interestingly, with the acid of a low-frequency alternating magnetic field (200 Hz), the actin cytoskeleton-targeting nanofibers could induce severe actin disruption, leading to a remarkable cell cycle arrest and drastic cell death of tumor cells both in vitro and in vivo, but showed no obvious toxicity to normal cells. The actin cytoskeleton-targeting/disrupting supramolecular assembly implies an excellent strategy for realizing efficient cancer therapy.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?