figshare
Browse

2D/1A Strategy to Regulate Film Morphology for Efficient and Stable Nonfullerene Organic Solar Cells

Posted on 2017-08-22 - 21:03
Recently, the ternary blend method has been successfully applied to nonfullerene organic solar cells (OSCs) and enhanced the device performance by utilizing complementary optical absorption. Here we demonstrate the two polymer donors and one small-molecule acceptor (i.e., 2D/1A) strategy to finely regulate the blend film morphology in fullerene-free OSCs. One crystalline polymer donor, PffBT4T–2OD, can act as an effective morphology regulator for a benchmark blend of PTB7–Th and ITIC, leading to appropriate phase-separated morphology, suppressed charge recombination, efficient charge transport and high carrier mobility. The resulting solvent additive- and annealing-free fabricated bulk-heterojunction OSCs show the best power conversion efficiency (PCE) of 8.22% with a significant increase of fill factor compared to their binary counterparts. Importantly, such ternary OSCs when processed under ambient condition retain excellent device performance with a PCE of 7.57%, indicative of good air-stability.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?