
Evolutionary Computation
for Feature Selection in

Classification

by

Bach Hoai Nguyen

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2018

Abstract
Classification aims to identify a class label of an instance according to the
information from its characteristics or features. Unfortunately, many clas-
sification problems have a large feature set containing irrelevant and re-
dundant features, which reduce the classification performance. In order
to address the above problem, feature selection is proposed to select a small
subset of relevant features. There are three main types of feature selection
methods, i.e. wrapper, embedded and filter approaches. Wrappers use a clas-
sification algorithm to evaluate candidate feature subsets. In embedded
approaches, the selection process is embedded in the training process of
a classification algorithm. Different from the other two approaches, filters
do not involve any classification algorithm during the selection process.
Feature selection is an important process but it is not an easy task due
to its large search space and complex feature interactions. Because of the
potential global search ability, Evolutionary Computation (EC), especially
Particle Swarm Optimization (PSO), has been widely and successfully ap-
plied to feature selection. However, there is potential to improve the effec-
tiveness and efficiency of EC-based feature selection.

The overall goal of this thesis is to investigate and improve the capa-
bility of EC for feature selection to select small feature subsets while main-
taining or even improving the classification performance compared to us-
ing all features. Different aspects of feature selection are considered in this
thesis such as the number of objectives (single-objective/multi-objective),
the fitness function (filter/wrapper), and the searching mechanism.

This thesis introduces a new fitness function based on mutual infor-
mation which is calculated by an estimation approach instead of the tra-
ditional counting approach. Results show that the estimation approach

works well on both continuous and discrete data. More importantly, mu-
tual information calculated by the estimation approach can capture feature
interactions better than the traditional counting approach.

This thesis develops a novel binary PSO algorithm, which is the first
work to redefine some core concepts of PSO such as velocity and mo-
mentum to suit the characteristics of binary search spaces. Experimental
results show that the proposed binary PSO algorithm evolve better solu-
tions than other binary EC algorithms when the search spaces are large
and complex. Specifically, on feature selection, the proposed binary PSO
algorithm can select smaller feature subsets with similar or better classifi-
cation accuracies, especially when there are a large number of features.

This thesis proposes surrogate models for wrapper-based feature se-
lection. The surrogate models use surrogate training sets which are sub-
sets of informative instances selected from the training set. Experimental
results show that the proposed surrogate models assist PSO to reduce the
computational cost while maintaining or even improving the classification
performance compared to using only the original training set.

The thesis develops the first wrapper-based multi-objective feature se-
lection algorithm using MOEA/D. A new decomposition strategy using
multiple reference points for MOEA/D is designed, which can deal with
different characteristics of multi-objective feature selection such as highly
discontinuous Pareto fronts and complex relationships between objectives.
The experimental results show that the proposed algorithm can evolve
more diverse non-dominated sets than other multi-objective algorithms.

This thesis introduces the first PSO-based feature selection algorithm
for transfer learning. In the proposed algorithm, the fitness function uses
classification performance to reduce the differences between domains while
maintaining the discriminative ability on the target domain. The experi-
mental results show that the proposed algorithm can select feature subsets
which achieve better classification performance than four state-of-the-art
feature-based transfer learning algorithms.

List of Publications

• Hoai Bach Nguyen, Bing Xue, and Peter Andreae. “PSO with Sur-
rogate Models for Feature Selection: Static and Dynamic Clustering-
based Methods”, Memetic Computing, 07 March 2018 (Online).
https://doi.org/10.1007/s12293-018-0254-9

• Hoai Bach Nguyen, Bing Xue, Peter Andreae. “Mutual Information
for Feature Selection: Estimation or Counting?”, Evolutionary Intel-
ligence, vol. 9, no. 3, pp. 95-110, 2016.

• Hoai Bach Nguyen, Bing Xue, Peter Andreae and Mengjie Zhang.
“A New Binary Particle Swarm Optimization Approach: Momen-
tum and Dynamic Balance Between Exploration and Exploitation”.
Submitted to IEEE Transactions on Cybernetics (under revise and re-
submit).

• Hoai Bach Nguyen, Bing Xue, Hisao Ishibuchi, Peter Andreae, and
Mengjie Zhang. “Multiple Reference Points based Decomposition
for Multi-objective Feature Selection in Classification: Static and Dy-
namic Mechanisms”. Submitted to IEEE Transactions on Evolution-
ary Computation (under revise and resubmit).

• Hoai Bach Nguyen, Bing Xue, and Peter Andreae. “A Particle Swarm
Optimization based Feature Selection Approach to Transfer Learn-
ing in Classification”. Proceedings of 2018 Genetic and Evolutionary

iii

iv LIST OF PUBLICATIONS

Computation Conference (GECCO 2018). ACM Press. Kyoto, Japan,
July 15th-19th 2018. 8pp. (to appear).

• Hoai Bach Nguyen, Bing Xue, and Peter Andreae. “A Hybrid GA-GP
Method for Feature Reduction in Classification”. Proceedings of the
11th International Conference on Simulated Evolution and Learning
(SEAL 2017). Lecture Notes in Computer Science. Vol. 10593. Shen-
zhen, China. November 10-13, 2017. pp. 591-604.

• Hoai Bach Nguyen, Bing Xue, Peter Andreae and Mengjie Zhang.
“Particle Swarm Optimisation with Genetic Operators for Feature
Selection”. Proceedings of 2017 IEEE Congress on Evolutionary Com-
putation (CEC 2017). Donostia - San Sebastian, Spain, 5-8 June, 2017.
pp. 286-293.

• Hoai Bach Nguyen, Bing Xue, Hisao Ishibuchi, Peter Andreae, and
Mengjie Zhang. “Multiple Reference Points MOEA/D for Feature
Selection”. Proceedings of 2017 Genetic and Evolutionary Compu-
tation Conference (GECCO 2017) Companion. ACM Press. Berlin,
German, 15 - 19 July 2017. pp 157-158.

• Hoai Bach Nguyen, Bing Xue, and Peter Andreae. “Surrogate-model
based Particle Swarm Optimisation with Local Search for Feature
Selection in Classification”. Proceeding of the 20th European Con-
ference on Applications of Evolutionary Computation (EvoApplica-
tions 2017) Part I, Lecture Notes in Computer Science. Vol. 10199.
Amsterdam. 18-21 April 2017. pp. 487-505. (Nominated as Best
Paper)

• Bach Hoai Nguyen, Bing Xue and Peter Andreae. “A Novel Bi-
nary Particle Swarm Optimisation Algorithm and its Applications
on Knapsack and Feature Selection Problems”. Asia-Pacific Sympo-
sium on Intelligent and Evolutionary Systems (IES2016), Canberra,
Australia, 16-18 November 2016. pp. 319-332

v

• Hoai Bach Nguyen, Bing Xue and Peter Andreae. “Mutual Infor-
mation Estimation for Filter Based Feature Selection Using Particle
Swarm Optimization”. Proceedings of the 19th European Confer-
ence on the Applications of Evolutionary Computation (EvoAppli-
cations 2016, EvoIASP 2016). Lecture Notes in Computer Science.
Vol. 9597. Porto, Portugal, March 30 - April 1, 2016. pp. 719-736

vi LIST OF PUBLICATIONS

Acknowledgments

I would like to express my sincere thanks to all those who gave me the
assistance and support during my PhD study. It would not be possible to
complete this thesis without your help.

First and foremost, I would like to express my deepest gratitude to
my supervisors Dr. Bing Xue, A/Prof. Peter “Pondy” Andreae, and Prof.
Mengjie Zhang for the support, entrenchment and guidance. Dr. Bing Xue
spends dedicated time and efforts to help me improve my research skill.
She always encourages and guides me through all the hard times during
my study. A/Prof. Peter Andreae is always nice to talk. All the discussions
with him always lead me to think deeper and have better ideas. He also
helps me a lot to improve my English. Prof. Mengjie Zhang not only helps
me in my research but also assists me in my life. He is always the person I
am seeking for help when I face any problem in my life.

I wish to thank all my friends in School of Engineering and Com-
puter Science, especially members of Evolutionary Computation Research
Group (ECRG). Special thanks to my officemates Qurrat Ul Ain (Annie)
and Fangfang Zhang for their jokes and tasty food.

I wish to thank my parents (Thanh Nguyen and Bon Nguyen) and my
little sister (Thao Nguyen) for their supports and encouragements. Last
but not least, I would like to thank my girlfriend Nga Kieu, for all her love
and support.

vii

viii LIST OF PUBLICATIONS

Contents

List of Publications iii

1 Introduction 5
1.1 Problem Statement . 5

1.2 Challenges . 8

1.2.1 Fundamental Challenges of Feature Selection 8

1.2.2 Limitations of Filter-based Feature Selection 9

1.2.3 Limitations of Wrapper-based Feature Selection . . . 10

1.2.4 Limitations of PSO-based Feature Selection 10

1.2.5 Limitations of Multi-objective Feature Selection . . . 11

1.2.6 Limitations of Feature-based Approaches for Trans-
fer Learning . 11

1.3 Research Goals . 12

1.4 Major Contributions . 13

1.5 Organization of the Thesis . 17

1.6 Benchmark Datasets . 18

2 Literature Review 21
2.1 Machine Learning . 21

2.1.1 Classification . 23

2.1.2 Transfer Learning . 28

2.2 Feature Selection . 31

2.2.1 Feature Selection . 31

ix

x CONTENTS

2.2.2 Feature Construction 38

2.3 Evolutionary Computation 39

2.3.1 Evolutionary Algorithms (EAs) 40

2.3.2 Swarm Intelligence (SI) 41

2.3.3 Particle Swarm Optimization 42

2.4 Multi-objective Optimization 47

2.4.1 Evolutionary Multi-objective Algorithm (EMO) . . . 47

2.5 Information Theory . 50

2.5.1 Basic Concepts . 50

2.5.2 Mutual Information Calculation 52

2.6 Traditional Techniques (non-EC) for Feature Selection 54

2.7 EC-based Feature Selection 56

2.7.1 Single-objective Feature Selection 56

2.7.2 Multi-objective Feature Selection 67

2.8 Feature-based Transfer Learning 69

2.9 Summary . 71

3 Mutual Information for Feature Selection 75

3.1 Introduction . 75

3.1.1 Chapter Goal . 76

3.2 Proposed Algorithm . 76

3.2.1 Representation . 77

3.2.2 Proposed Fitness Function 77

3.2.3 Overall Algorithm . 80

3.3 Experiment Design . 80

3.3.1 Datasets . 80

3.3.2 Parameter Settings . 83

3.4 Results and Discussion . 84

3.4.1 Real-world Datasets 84

3.4.2 Artificial Datasets . 88

3.4.3 Consistency of PSO-KDE and PSO-C 94

CONTENTS xi

3.4.4 ANOVA Test Analysis 94

3.4.5 Computational Cost 95

3.5 Chapter Summary . 97

4 Novel Binary PSO for Feature Selection 99

4.1 Introduction . 99

4.1.1 Chapter Goal . 100

4.2 Proposed Algorithm . 102

4.2.1 Sticky BPSO (SBPSO) 102

4.2.2 Exploration and Exploitation in SBPSO 104

4.2.3 Dynamic Strategy . 105

4.2.4 Overall Structure . 106

4.3 Experiment Design . 108

4.3.1 Benchmark Problems 108

4.3.2 Parameter Settings . 109

4.4 Experiments on Knapsack . 111

4.4.1 PSO for Knapsack . 111

4.4.2 Profits . 112

4.4.3 Evolutionary Processes 115

4.4.4 Evolutionary Processes with 6000 Iterations 116

4.4.5 Effect of Dynamic Strategy 117

4.4.6 Computational Time 118

4.5 Experiments on Feature Selection 119

4.5.1 PSO for Feature Selection 119

4.5.2 Feature Subsets . 120

4.5.3 Evolutionary Processes 123

4.5.4 Computational Time 124

4.5.5 Further Discussions 126

4.5.6 Comparison with non-EC based Feature Selection . . 127

4.6 Chapter Summary . 130

xii CONTENTS

5 Surrogate Model for Feature Selection 133

5.1 Introduction . 133

5.1.1 Chapter Goal . 133

5.2 Proposed Methods . 134

5.2.1 Static Surrogate Model for PSO-based Feature Selec-
tion . 134

5.2.2 Dynamic Surrogate Model 141

5.3 Experiment Design . 143

5.4 Results and Discussions . 144

5.4.1 DROP3 vs AGG . 144

5.4.2 Results of Clustering-based Surrogate Models 147

5.5 Chapter Summary . 153

6 Decomposition-based Multi-objective Feature Selection 155

6.1 Introduction . 155

6.1.1 Chapter Goal . 156

6.2 Proposed Algorithms . 157

6.2.1 Characteristics of Feature Selection 158

6.2.2 Decomposition with Multiple Reference Points 161

6.2.3 Reference Points Allocation 163

6.2.4 Repairing Mechanism 166

6.2.5 Fixing Duplicated Feature Subsets 167

6.2.6 Overall Proposed Algorithms 168

6.3 Experiment Design . 171

6.3.1 Benchmark Techniques 171

6.3.2 Parameter settings . 172

6.4 Results . 173

6.4.1 Comparison with Using All Features 174

6.4.2 MOEA/D-STAT vs Other EMO Methods 174

6.4.3 MOEA/D-DYN vs Others 179

6.4.4 Further Analysis on the Evolutionary Processes . . . 181

CONTENTS xiii

6.5 Chapter Summary . 183

7 Feature Selection for Transfer Learning 185
7.1 Introduction . 185

7.1.1 Chapter Goal . 186
7.2 Proposed Algorithm . 187

7.2.1 New Fitness Function 188
7.2.2 Discriminability on the Source Domain: srcErr 189
7.2.3 Discriminability on The Target Domain: tarErr 190
7.2.4 Difference Between Marginal Distributions: diffST . 192
7.2.5 Overall Algorithm . 193

7.3 Experiment Design . 193
7.3.1 Benchmark Datasets 194
7.3.2 Parameter Settings . 196

7.4 Results and Discussions . 196
7.4.1 SemPSO/UnPSO vs Using All Features 197
7.4.2 SemPSO vs STCA/SMIDA 199
7.4.3 UnPSO vs TCA/MIDA 200
7.4.4 Overall Comparisons 200

7.5 Chapter Summary . 201

8 Conclusions 203
8.1 Achieved Objectives and Main Conclusions 204

8.1.1 PSO and Mutual Information Estimation for Feature
Selection . 204

8.1.2 Sticky Binary PSO . 205
8.1.3 Surrogate Models for Wrapper-based Feature Selection208
8.1.4 Multi-objective Wrapper-based Feature Selection . . 210
8.1.5 Feature Selection for Transfer Learning 211

8.2 Future Work . 212
8.2.1 Mutual Information Estimation-based Feature Selec-

tion . 213

xiv CONTENTS

8.2.2 Combining Feature Construction and Feature Selec-
tion . 213

8.2.3 MOEA/D for Feature Selection 214
8.2.4 Feature-based Transfer Learning 214

List of Tables

1.1 Feature selection datasets. 19

3.1 Artificial datasets . 81

3.2 Testing accuracies on real-world datasets. 85

3.3 Testing accuracies on artificial datasets. 90

3.4 Selected feature subsets (all indexes of features are in the
curly brackets followed by the number of times the feature
subset is selected). 91

3.5 Example of redundancy calculated by KDE and Counting. . 94

3.6 ANOVA test results . 95

3.7 Computational time on real-world datasets 96

4.1 Parameter settings evolved by OP-PSO on each dataset. . . . 110

4.2 Ranks of parameter settings on the five datasets. 111

4.3 Parameter settings of PSO algorithms. 111

4.4 Experimental results on knapsack. 113

4.5 W/D/L on knapsack. 114

4.6 Computational time (in seconds) on knapsack. 118

4.7 W/D/L on feature selection. 121

4.8 Training results on feature selection. 121

4.9 Testing results on feature selection. 122

4.10 Computational time (in seconds) on feature selection. 126

4.11 Classification accuracies of Dyn and RFS. 129

1

2 LIST OF TABLES

5.1 Compare different Is values against Is = 75. 144
5.2 DROP3 vs Agglomerative Clustering algorithms. 145
5.3 Results of clustering-based surrogate models. 148
5.4 Fitness values (x100) of different surrogate models 152

6.1 IGD on training sets. 175
6.2 IGD on test sets. 175
6.3 Hypervolume on training sets 176
6.4 Hypervolume on test sets. 176

7.1 Domain adaptation problems. 195
7.2 Overall results on 23 domain adaptation cases. 198
7.3 SemPSO or UnPSO being better/similar/worse using sig-

nificance tests. 198

List of Figures

2.1 Feature Selection Process . 32

2.2 Feature Selection Categories 36

2.3 Flowchart of PSO . 43

3.1 Overall feature selection system. 80

3.2 Comparisons between two methods with different factors . 96

4.1 Dynamic SBPSO Overview. 107

4.2 Evolutionary process of the four algorithms on 3000 iterations.115

4.3 Evolutionary process of the four algorithms on 6000 iterations.117

4.4 Evolutionary processes on feature selection. 125

4.5 Evolutionary state of BPSO algorithms. 128

5.1 An example of the agglomerative clustering algorithm. . . . 137

5.2 Overall algorithm using surrogate models. 141

5.3 Evolutionary process of PSO on the Madelon dataset 144

5.4 DROP3 may remove informative instances. 146

5.5 DROP3 cannot remove noisy instances. 146

5.6 Real evolutionary processes on static surrogate models. . . . 150

6.1 Examples of defining weights in MOEA/D 158

6.2 Characteristics of multi-objective feature selection 159

6.3 Multiple reference points in MOEA/D. 161

3

4 LIST OF FIGURES

6.4 Dynamic reference points example: fixed points are green,
moving points are red, dashed line shows the interval that
moving points are located in the corresponding iterations. . . 164

6.5 Overall multiple reference point-based MOEA/D algorithms.168
6.6 Median fronts on training sets. 177
6.7 Median fronts on test sets. 177
6.8 Evolutionary processes of the 1st run on MultipleFeatures. . 181

7.1 An overall view of transfer learning. 188
7.2 PSO-based Feature Selection for Domain Adaptation 194

Chapter 1

Introduction

This chapter introduces the problem that this thesis addresses, then de-
scribes the motivations, the research goals, and the major contributions of
the thesis.

1.1 Problem Statement

Classification is an important task in machine learning, which aims to as-
sign a class label to an instance based on the characteristics or features
of the instance. In classification, a classification algorithm is trained on
a set of labeled instances, called a training set. The learned classifier is
then used to predict the class label of the unlabeled future instances. The
performance of a learned classifier depends heavily on the quality of the
feature set describing the instances.

Nowadays, with advancements in technology, real-world problems are
often described by a large number of features. Due to the “curse of dimen-
sionality” [1], it is difficult to train a classification algorithm efficiently and
effectively on a large number of features. Particularly, the increment in
dimensionality enlarges the number of possible instances in the instance
space, which makes the available data become sparse [2]. In order to
achieve reliable results in such high-dimensional problems, classification

5

6 CHAPTER 1. INTRODUCTION

algorithms require a large amount of data which usually grows exponen-
tially with respect to the number of features. Therefore, high dimension-
ality is problematic to any classification algorithm. Fortunately, not all
features are necessary or useful.

In contrast to relevant features which provide useful information about
the learning task, irrelevant features provide misleading information lead-
ing to deterioration in the classification performance [3]. For example, in
k-nearest neighbor (KNN), the irrelevant or noisy features may increase
the distances between instances from the same class, which makes KNN
more difficult to correctly classify instances. In some other classification
algorithms such as decision trees (DT) or support vector machines (SVM),
the learned model may have to overfit the irrelevant features to cope with
the data; in which case it will not work well on unseen/future instances.

Redundant features provide the same or similar information about the
learning task as other features. In respect of classification algorithms which
directly use training instances in the classification process such as Naive
Bayes or KNN, redundant features add unnecessary weights which can
reduce the classification performance. For classification algorithms which
explicitly build a classification model such as DT or SVM, the redundant
features can be removed during the training process. However, the redun-
dant features cause extra complexity which increases the training time.

In order to solve the high dimensionality problem, feature selection [4]
is proposed to select a small and more informative feature subset from the
original features. Feature selection reduces the number of features by re-
moving irrelevant or redundant features, which results in a subset of the
original features. The benefits of doing feature selection include improv-
ing the learning performance, saving the cost of measuring unused fea-
tures, and making the learned classifier simpler and easier to understand.
A key element of any feature selection algorithm is its evaluation criterion
for choosing between alternative subsets of features.

Depending on the evaluation criterion, existing feature selection meth-

1.1. PROBLEM STATEMENT 7

ods can fall into three categories: embedded, wrapper and filter approaches
[5]. In embedded approaches, the selection process is a part of the training
procedure of a classification algorithm; so embedded approaches consider
the interactions between selected features and the classification algorithm.
However, embedded approaches are only applicable to some specific al-
gorithms such as DT, SVM. In wrappers, a classification algorithm is used
to calculate fitness values of feature subsets. In contrast, filters use data
characteristics to evaluate feature subsets, which do not involve any classi-
fication algorithm. Compared with wrappers, it is more difficult for filters
to consider multi-way feature interactions. Therefore, wrappers usually
achieve better classification accuracies than filters. However, wrappers
produce feature subsets with poorer generality to other classification al-
gorithms (other than the wrapped classification method) than filters. In
addition, wrappers are typically more computationally intensive than fil-
ters. Given the pros and cons of the filter and wrapper approaches, one
of the objectives of this thesis is to improve their effectiveness and/or effi-
ciency, which contributes to the evaluation part of feature selection.

Feature selection has been proven to be an NP-hard combinatorial prob-
lem [6], which makes an exhaustive search impractical. This thesis mainly
uses Particle Swarm Optimization (PSO) [7] as the searching mechanism
to achieve feature selection. As a member of evolutionary computation
(EC) family, PSO has a potential global search ability which is suitable to
feature selection. In comparison with other (EC) techniques, such as ge-
netic programming (GP) [8], genetic algorithms (GAs) [9], PSO gains more
attention since it is simpler, has fewer parameters and converges quicker
[10]. Furthermore, although both GAs and PSO have vector-based rep-
resentations which is suitable to feature selection, PSO is applied more
widely. The main reason is that without a careful design, the crossover
and mutation operators of GAs might break good groups of complemen-
tary features when solving feature selection problems.

Feature selection can be considered a multi-objective problem since

8 CHAPTER 1. INTRODUCTION

its two main objectives, reducing the number of features and improv-
ing the classification performance, are usually in conflict. As a family of
population-based optimization techniques, EC can be naturally applied to
evolve a set of trade-off solutions for multi-objective problems, including
feature selection. The evolutionary multi-objective methods (EMO) fall
into three main categories: Pareto dominance-based algorithms, indicator-
based algorithm, and decomposition-based algorithm. Most existing multi-
objective feature selection work directly apply the Pareto dominance-based
algorithms without considering the characteristics of multi-objective fea-
ture selection such as its highly discontinuous Pareto front and its partially
conflicting objectives.

Transfer learning is an important task in machine learning, which uses
gained knowledge from a problem (source domain) to improve learning
performance on a different but related problem (target domain). The source
and target domains can have different feature spaces and/or data distri-
butions. Transfer learning is useful in many real-world cases, for exam-
ple when it is difficult or expensive to collect labeled data in a domain,
the data or extracted knowledge from related domains can be utilized to
assist learning in the concerned domain. The knowledge can be trans-
ferred by different approaches such as instance-based [11, 12], parameter-
based [13, 14] or feature-based approaches [15, 16, 17]. This thesis targets
to achieve transfer learning through feature-based approaches. The main
goal is to find a good feature representation to minimize the differences
between two domains while maintaining discriminating abilities on both
domains.

1.2 Challenges

1.2.1 Fundamental Challenges of Feature Selection

Feature selection is a difficult task because of the following reasons:

1.2. CHALLENGES 9

• There can be complex interactions between features. For example,
two weakly relevant features can significantly improve the classifi-
cation performance when they are selected together. These features
are usually called complementary features [10]. In contrast, select-
ing two relevant features may result in redundancy. In order to pro-
duce an optimal subset of features in terms of size and classification
performance, the searching algorithm and fitness evaluation have
to consider the interactions between features, which is difficult to
achieve.

• The search is expensive: Given n original features, the total number
of possible feature subsets is 2n. Thus, in feature selection, the search
space size grows exponentially with respect to the number of origi-
nal features. Due to the complex interactions between features, the
combination of m individually best features is not necessary the best
m features. Therefore, greedy searches generally unable to provide
the best results for feature selection. In order to achieve good perfor-
mance in feature selection, global heuristic searches are required to
generate promising feature subset candidates.

1.2.2 Limitations of Filter-based Feature Selection

Nowadays, there are many filter measures for feature selection, for exam-
ple Fisher score [18, 19], consistency measure [20], correlation measures
[21, 22] and information-based measures [23, 24, 25]. Among these mea-
sures, information-based measures, specifically mutual information, gain
more attention because they are easier to detect non-linear relationship
between two random variables [26, 27]. It also has been shown that mu-
tual information achieves better classification performance than other fil-
ter measures when they are applied to feature selection [28]. However, in
most current approaches, to calculate the mutual information, the proba-
bility distribution is achieved by counting the number of instances with

10 CHAPTER 1. INTRODUCTION

each possible feature value. Therefore, mutual information can only be
applied to discrete datasets. In addition, when the number of possible fea-
ture values is large, this requires a large number of instances to calculate
mutual information accurately. Therefore, how to design a new mutual
information-based fitness function, which is efficient and cooperative with
EC techniques, can deal with different kinds of datasets, is an open issue.

1.2.3 Limitations of Wrapper-based Feature Selection

In comparison with filter-based feature selection approaches, the wrapper-
based approaches usually achieve better classification performance since
the evaluation process explicitly considers the interactions between se-
lected features and the classification algorithm. However, the effectiveness
of wrappers comes along with their expensive computational cost since it
involves a learning process during each evaluation step. The question of
how to reduce the computational cost while still maintaining or even im-
proving the feature selection performance is still an open issue.

1.2.4 Limitations of PSO-based Feature Selection

Most of the current PSO-based feature selection algorithms apply contin-
uous PSO, in which each position entry corresponds to an original feature
and its value is a real number in the range [0,1]. A threshold is used to de-
termine whether the corresponding feature is selected. It would be more
natural to represent each position entry as a binary value i.e. 0 or 1, which
is known as binary PSO [29]. However, the performance of binary PSO
is limited compared with continuous PSO [30]. The main reason is that
binary PSO directly applies the updating equations from continuous PSO
without considering the characteristics of binary search spaces. For exam-
ple, in the binary search space, there is no direction in the movement of
a particle; so it is not appropriate to directly apply directed velocity and
momentum from the continuous space to the binary space. It is important

1.2. CHALLENGES 11

to design new updating mechanisms for binary PSO, which follows the
main idea of PSO and consider the characteristics of binary search spaces.

1.2.5 Limitations of Multi-objective Feature Selection

Feature selection has two main objectives, which are maximizing the clas-
sification performance and minimizing the number of selected features.
Most of the recent studies consider feature selection as a multi-objective
problem. However, feature selection has its own characteristics which
should be considered to evolve better non-dominated feature subsets. Firstly,
feature selection has a highly discontinuous Pareto front. Secondly, the
two objectives are not always in conflict with each other. For example, in
some cases removing irrelevant features may improve the classification
performance. By detecting conflicting regions, the performance of a multi-
objective feature selection algorithm can be improved by focusing more on
the detected regions. Many multi-objective algorithms have been applied
to feature selection but none of them can address the above characteristics
of multi-objective feature selection.

1.2.6 Limitations of Feature-based Approaches for Trans-

fer Learning

In feature-based transfer learning, the goal is to search for a good feature
representation, which not only reduces the differences between domains
but also maintains as much useful information for classification as possi-
ble. Most of the existing feature-based transfer learning approaches aim
mainly to achieve the first objective while ignoring the second one. In
addition, feature interactions are difficult to be considered in the existing
approaches. Although EC techniques have been widely applied to fea-
ture selection and achieved promising results, they have not been used to
achieve feature-based transfer learning.

12 CHAPTER 1. INTRODUCTION

1.3 Research Goals

The overall goal of this thesis is to develop new methods to improve the
capability of EC-based feature selection in terms of both the evaluations
and searching mechanisms, which is expected to efficiently and effectively
reduce the number of features while improving the classification perfor-
mance over using all features. In achieving this overall goal, this thesis is
structured around the following five objectives:

1. Develop a new fitness function based on mutual information for fea-
ture selection. The proposed fitness function is expected to consider
interactions between features, which results in a smaller set of fea-
tures with better classification performance than using all features
and other traditional mutual information-based feature selection al-
gorithms.

2. Develop a surrogate model for wrapper-based feature selection, which
is expected to reduce the computational cost while achieving similar
or better performance than traditional wrapper-based feature selec-
tion algorithms. In wrappers, the main computational cost is from
the evaluation process, so the proposed surrogate model focuses on
speeding up the evaluation process while maintaining or even im-
proving the evolved feature subsets.

3. Develop a new binary PSO algorithm which can reflect movements
in binary search spaces more accurately than the standard one. The
proposed binary PSO algorithm is expected to solve feature selection
as well as other binary problems better than the standard binary PSO
algorithm and other well-known binary EC algorithms.

4. Develop a new multi-objective feature selection approach, which can
cope with the characteristics of multi-objective feature selection. The
proposed algorithm is expected to evolve a set of non-dominated
feature subsets with a wider range of numbers of features and better

1.4. MAJOR CONTRIBUTIONS 13

classification performance than other well-known EC-based multi-
objective feature selection algorithms.

5. Develop an EC-based feature selection approach to transfer learn-
ing, which not only minimizes the differences between different do-
mains but also selects the most informative features for classifica-
tion. The proposed algorithm is expected to evolve a small feature
subset with better classification performance than other well-known
feature-based transfer learning methods.

1.4 Major Contributions

This thesis makes the following contributions:

1. This thesis proposes a new mutual information-based fitness func-
tion in PSO for feature selection, in which kernel density estima-
tion (KDE) is used to calculate the mutual information. The esti-
mator allows mutual information to work directly on continuous
datasets, which is the limitation of many mutual information based
feature selection methods. The experimental results show that the
proposed fitness function achieves similar or better classification al-
gorithm performance than the traditional counting approach on both
continuous and numeric discrete datasets.

Part of this contribution has been published in:

Hoai Bach Nguyen, Bing Xue and Peter Andreae. “Mutual Infor-
mation Estimation for Filter Based Feature Selection Using Particle
Swarm Optimization”. Proceedings of the 19th European Confer-
ence on the Applications of Evolutionary Computation (EvoAppli-
cations 2016, EvoIASP 2016). Lecture Notes in Computer Science.
Vol. 9597. Porto, Portugal, March 30 - April 1, 2016. pp. 719-736

14 CHAPTER 1. INTRODUCTION

Hoai Bach Nguyen, Bing Xue, and Peter Andreae. “Mutual Informa-
tion for Feature Selection: Estimation or Counting?”, Evolutionary
Intelligence, vol. 9, no. 3, pp. 95-110, 2016.

2. This thesis proposes a novel binary PSO (BPSO) algorithm, which
can be applied to not only feature selection but other binary opti-
mization problems. In the proposed BPSO, the velocity and momen-
tum are reformulated as a flipping probability and a stickiness prop-
erty, respectively. The exploration and exploitation of the proposed
BPSO are investigated to develop a dynamic mechanism which up-
dates the algorithm’s parameters. The experimental results show
that the new velocity and momentum concepts assist BPSO to evolve
better solutions than the standard BPSO algorithm and other EC al-
gorithms. This is the first time in BPSO, the four important concepts,
i.e. velocity, momentum, exploration and exploitation, are investi-
gated systematically.

Part of this contribution has been published/submitted to:

Hoai Bach Nguyen, Bing Xue and Peter Andreae. “A Novel Bi-
nary Particle Swarm Optimization Algorithm and its Applications
on Knapsack and Feature Selection Problems”. Asia-Pacific Sympo-
sium on Intelligent and Evolutionary Systems (IES2016), Canberra,
Australia, 16-18 November 2016.pp 319-332.

Hoai Bach Nguyen, Bing Xue, Peter Andreae and Mengjie Zhang.
“A New Binary Particle Swarm Optimization Approach: Momen-
tum and Dynamic Balance Between Exploration and Exploitation”.
submitted to IEEE Transactions on Cybernetics (under revise and re-
submit).

3. This thesis proposes a surrogate model for wrapper-based feature
selection which reduces the computational cost by selecting a small
set of informative instances (surrogate set) from the original training
set to quickly locate promising search regions. The surrogate set is

1.4. MAJOR CONTRIBUTIONS 15

built by firstly applying a hierarchical clustering method to the orig-
inal training set and then selecting an instance as a representative for
each instance cluster. The experimental results show that the surro-
gate model successfully reduces the computational time, improves
the feature selection performance, and partially avoids overfitting.

Part of this contribution has been published in:

Hoai Bach Nguyen, Bing Xue, and Peter Andreae. “Surrogate-model
based Particle Swarm Optimization with Local Search for Feature
Selection in Classification”. Proceeding of the 20th European Con-
ference on Applications of Evolutionary Computation (EvoApplica-
tions 2017) Part I, Lecture Notes in Computer Science. Vol. 10199.
Amsterdam. 18-21 April 2017. pp. 487–505 (Nominated as Best Pa-
per)

Hoai Bach Nguyen, Bing Xue, and Peter Andreae. “PSO with Sur-
rogate Models for Feature Selection: Static and Dynamic Clustering-
based Methods”, Memetic Computing, 07 March 2018 (Online).
https://doi.org/10.1007/s12293-018-0254-9

4. This thesis proposes a novel decomposition-based multi-objective
feature selection algorithm, in which two decomposition mechanisms
(static and dynamic) based on multiple reference points are devel-
oped to address the characteristics of feature selection. The static
multiple reference point-based mechanism helps to reduce the de-
pendence of the decomposition on the true Pareto front shape and ef-
fect of the discontinuity; the dynamic one is able to detect regions in
which the objectives are in conflict, and allocates more computation
resources to the detected regions. In comparison with other EMO
algorithms, the proposed decomposition approach evolves more di-
verse Pareto fronts with better performance. The dynamic mecha-
nism successfully identifies conflicting regions and further improves
the approximation quality for the Pareto fronts.

16 CHAPTER 1. INTRODUCTION

Part of this contribution has been published/submitted to:

Hoai Bach Nguyen, Bing Xue, Hisao Ishibuchi, Peter Andreae, and
Mengjie Zhang. “Multiple Reference Points MOEA/D for Feature
Selection”. Proceedings of 2017 Genetic and Evolutionary Computa-
tion Conference (GECCO 2017). ACM Press. Berlin, German, 15 - 19
July 2017.pp 157-158

Hoai Bach Nguyen, Bing Xue, Hisao Ishibuchi, Peter Andreae, and
Mengjie Zhang. “Multiple Reference Points based Decomposition
for Multi-objective Feature Selection in Classification: Static and Dy-
namic Mechanisms”. submitted to IEEE Transactions on Evolution-
ary Computation (under revise and resubmit).

5. This thesis proposes a new feature-based transfer learning method,
where a new fitness function is developed to select a number of origi-
nal features and shift source and target domains to be closer. Classifi-
cation performance is used in the proposed fitness function to main-
tain the discriminative ability of the selected features in both do-
mains and minimize the number of model assumptions. The results
show that the proposed algorithm is able to select less than half of
the original features, achieve better classification performance than
using all features, and outperform the four state-of-the-art feature-
based transfer learning algorithms. This is the first time EC is uti-
lized to achieve feature selection-based transfer learning.

Part of this contribution has been published in:

Hoai Bach Nguyen, Bing Xue, and Peter Andreae. “A Particle Swarm
Optimization based Feature Selection Approach to Transfer Learn-
ing in Classification”. Proceedings of 2018 Genetic and Evolutionary
Computation Conference (GECCO 2018). ACM Press. Kyoto, Japan,
15-19 July 2018. 8pp. (to appear)

1.5. ORGANIZATION OF THE THESIS 17

1.5 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents
the literature review. The six research objectives are presented in five con-
tribution chapters from Chapter 3 to Chapter 7. Chapter 8 concludes the
thesis.

Chapter 2 firstly introduces basic concepts of machine learning, classi-
fication, feature selection, information theory, evolutionary computation,
multi-objective algorithms and transfer learning. Based on the discussion
about the related feature selection work, open issues are identified, which
form the thesis’s motivation.

Chapter 3 presents a new filter-based feature selection algorithm based
on mutual information estimation. The chapter firstly introduces more de-
tails about mutual information with its current challenges when applying
to feature selection. The chapter then presents how to use mutual informa-
tion estimation and PSO to address the challenges. A set of experiments
are conducted on both synthetic and real-world datasets, and then the re-
sults are discussed and analyzed.

Chapter 4 presents a novel binary PSO, which can be applied to binary
problems including feature selection. The chapter starts with a short in-
troduction about binary PSO and its current limitations. The chapter then
proposes the novel binary PSO and shows how the reformulated concepts
can address the limitations. Experiments on two well-known traditional
binary problems, i.e. knapsack and feature selection, are performed to
compare the proposed binary PSO algorithm with other EC algorithms.

Chapter 5 presents a surrogate model for wrapper-based feature selec-
tion algorithm. The chapter shows how to build a small surrogate training
set from the original one using a hierarchical clustering algorithm. A local
search based on the surrogate training set is then described. Experiments
are conducted on different datasets to examine the performance of the pro-
posed surrogate model and compare it with using the original training set.

18 CHAPTER 1. INTRODUCTION

Chapter 6 presents a novel multi-objective feature selection algorithm,
which is based on the MOEA/D (Multi-objective Evolutionary Algorithm
based on Decomposition) framework [31]. The new decomposition mech-
anism using multiple reference points is presented, which is then followed
by a dynamic reference point allocating mechanism to detect the conflict-
ing regions. Experiments are conducted to compare between the proposed
algorithm and other well-known EMO algorithms such as NSGAII (Non-
dominated Sorting Genetic Algorithm II), SPEA2 (Improving the Strength
Pareto Evolutionary Algorithm), OMOPSO and the standard MOEA/D
algorithm.

Chapter 7 presents the first feature-based transfer learning algorithm
using PSO. The chapter describes a new fitness function which mainly
uses the classification accuracies to simultaneously reduce the differences
between domain and maintain the discriminative ability. The fitness func-
tion is used with PSO to form a transfer learning algorithm, which is then
examined and compared with other state-of-the-art transfer learning algo-
rithms on different real-world problems.

Chapter 8 summarizes the work in the thesis and draws overall con-
clusions. Some possible future research directions are suggested in the
chapter.

1.6 Benchmark Datasets

In this thesis, the proposed algorithms are evaluated on 12 datasets se-
lected from the UCI Repository of Machine Learning Databases [32]. The
selected datasets have different numbers of features (from 13 to 649), dif-
ferent numbers of classes (from 2 to 16), and different numbers of instances
(from 178 to 2600). The selected datasets also have different feature types,
i.e., real-value features, integer-value features, or mixture between both
types. They are also from different real-world areas such as physics, fi-
nance, or medical area. The datasets are selected with an expectation

1.6. BENCHMARK DATASETS 19

Table 1.1: Feature selection datasets.

Dataset #Features #Classes #Instances Feature Type Area

Wine 13 3 178 Mixed Physical
Australian 14 2 178 Mixed Financial
Vehicle 18 4 846 Integer Image
German 24 2 1000 Mixed Financial
WBCD 30 2 569 Real Medical
Ionosphere 34 2 351 Mixed Physical
Sonar 60 2 208 Real Physical
Hillvalley 100 2 606 Real Graph
Musk1 166 2 476 Integer Physical
Arrhythmia 279 16 452 Mixed Medical
Madelon 500 2 4400 Integer Artificial
Multiple Features 649 10 2000 Mixed Digit Recognition

that they can be well representatives of real-world problems. More details
about the selected datasets can be seen in Table 1.1.

20 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

This chapter firstly provides background and important concepts of ma-
chine learning, feature selection, evolutionary computation (mainly PSO),
multi-objective optimization (mainly MOEA/D) and information theory.
It then reviews related work on traditional (non-EC) feature selection and
EC-based feature selection. The review also presents limitations of exist-
ing work which form the motivations of this thesis.

2.1 Machine Learning

Machine learning is a major field of Artificial Intelligence, which aims to
construct a system that is capable to learn from data rather than explic-
itly follows programmed instructions [33, 34]. By observing more exam-
ples/instances, a machine learning system is expected to automatically
improve its performance for a certain task. There are different types of ma-
chine learning tasks: supervised learning, unsupervised learning, semi-
supervised learning, reinforcement learning, and transfer learning [35, 36].
The differences between these machine learning types are given as below:

• Supervised learning: In supervised learning, all instances or exam-
ples given to a machine learning system are labeled by desired out-

21

22 CHAPTER 2. LITERATURE REVIEW

puts, which are known in advance. The task of supervised learning
is to generate a function, which maps from an input to one of the
known outputs [37]. Two well-known supervised learning tasks are
classification and regression.

• Unsupervised learning: In unsupervised learning, the desired out-
puts are not known, which means that the instances are not labeled.
Therefore, the goal of unsupervised learning algorithms is to extract
a common pattern from the instances, which can be used to group
similar instances together. Clustering is probably the most common
task in unsupervised learning.

• Semi-supervised learning: Semi-supervised learning falls between
supervised learning and unsupervised learning, where only a few
labeled instances are provided while most instances are not labeled.
The aim of semi-supervised learning is to extract useful information
from both labeled and unlabeled instances, which is used to either
correctly predict the class labels of unlabeled instances (transductive
learning) or infer a mapping function from the inputs to the outputs
(inductive learning).

• Reinforcement learning: In reinforcement learning, a machine learn-
ing system directly interacts with an environment via a sequence of
actions. Each action will result in a reward or punishment based on
feedback from the environment. The task is to achieve a certain goal
by learning a sequence of actions with the best goodness.

• Transfer learning: In transfer learning, the main task is to reuse
knowledge obtained from a source problem to improve the learning
performance on a different but related problem (target problems).
The two problems can have different learning tasks, different feature
spaces, and/or different data distributions.

2.1. MACHINE LEARNING 23

This thesis focuses on Supervised learning, particularly Classification, and
Transfer learning.

2.1.1 Classification

Classification is one of the most important tasks in supervised learning,
which aims to assign a given category (a class label) to an instance [38]. In
a classification process, a classifier is needed to predict the class label of
unseen instances. The classifier makes decisions based on values of fea-
tures that describe the instances. The classifier is obtained by training a
classification algorithm on a set of labeled instances. A classification prob-
lem is called a binary classification if there are only two class labels. When
the number of class labels is more than two, the classification problem is
known as a multi-class problem. An example of classification application
is to predict breast cancer for a patient [39]. Based on the symptoms of
people who are “negative” or “positive” in the cancer test, the classifica-
tion algorithm is trained to capture the characteristics of patients having
cancer. After that, the learned classifier can take the symptoms of a patient
as an input to predict whether the patient has a breast cancer or not.

Training and testing

There are two main processes in a classification system: training and test-
ing processes. During the training process, a classification algorithm is
learned by using a set of instances, which is called a training set. The
learned classifier is then evaluated on another set of instances which are
unseen during the training process. The set of instances used in the testing
process is called a test set. Each instance is described by a vector of feature
values which can be numeric or categorical. The features have a signifi-
cant effect on the learning time and the classification performance of the
learned classifier.

In order to examine a classification algorithm, real-world datasets are

24 CHAPTER 2. LITERATURE REVIEW

used as the benchmark problems. These datasets can be collected from
public source for researches such as UCI Machine Learning Repository
[32]. Each dataset is divided into two parts for training and testing pur-
poses. The division should ensure that there is no overlapping between
training and test sets.

Holdout [40] is one of the division methods, which divides the dataset
into two disjoint subsets for training and testing processes. The sizes
of these subsets follow an user-predefined proportion. However, in this
method, all instances in the test set are not used for training the classifi-
cation algorithm. It is not an efficient usage of datasets, especially when
the number of instances in the dataset is too small. To overcome the limi-
tation of holdout method, n-fold cross-validation was proposed [41]. In n-
fold cross-validation, a dataset is randomly divided into n subsets (called
“folds”) with near-equal sizes. Note that the partitioning process ensures
that the class distribution in each fold roughly remains the same as in the
whole dataset. After that, each fold is then used for testing process exactly
once while the rest of the dataset is used for training the classification
algorithm. Consequently, the classification algorithm is trained n times,
which results in n experiments with n different accuracies. The overall
performance of the classifier is the average of the above n accuracies. In
general, the larger the number of folds (n), the less bias the estimation
of the classification performance, because a large number of instances are
used in the training process. However, a large n might result in a high
variance. Leave-one-out cross-validation (LOOCV) is a special case of n-
folds cross-validation when n is set to the number of training examples.
It means that, in LOOCV, each instance will be used as a test case exactly
once and the number of times that the classification algorithm is trained,
is equal to the number of instances in a dataset. Generally, by using n-fold
cross-validation, all instances are used for both training and testing pro-
cesses while the mutual exclusive condition between training and test set
still holds. n-fold cross-validation is usually used when there are a small

2.1. MACHINE LEARNING 25

number of instances in the whole dataset. One possible problem of n-fold
cross-validation is the n repetition are not independent which might intro-
duce bias. To address this problem, repeated n-fold cross-validation can
be used. Particularly, the data is shuffled every repetition so that each fold
has different data for different repetitions.

In classification, overfitting [42] is a common problem. The goal of
classification is to achieve as high testing accuracy as possible. However,
when there are too many parameters and the training phase does not in-
volve any regularization pressure, the learned classifier starts remember-
ing all characteristics of the training data. This memorization leads to
very high training accuracy. However, there will be a risk that the learned
model also fits with noisy instances in the training set. Consequently, due
to the lack of generality, the learned model has a poor prediction ability,
which results in a low testing accuracy. The phenomenon, in which the
learned classifier performs well on the training set and badly in predict-
ing the testing instances, is called overfitting. In contrast to overfitting,
underfitting is another problem where the model to learn is too simple
with too few degrees of freedom. Consequently, the learned model does
not fit the data well enough which also leads to a poor performance on
unseen/testing data.

Classification algorithms

• K-nearest Neighbor Classifier (KNN)

KNN [43] is a type of instance-based learning approach, which sim-
ply remembers all the training instances instead of inducing any clas-
sification rule. The new instance is compared with all training in-
stances to determine its class label. Firstly the distances between the
new instance and every training instance are calculated. After that
the K nearest training instances (neighbors) of the new instance are
identified, where K is a user-predefined small integer number. The
most popular class label among the K nearest neighbors is assigned

26 CHAPTER 2. LITERATURE REVIEW

to the new instance. Many distances measures have been used in
KNN, for example, Euclidean distance (continuous data), Manhattan
(discrete data). KNN is considered a lazy-learning algorithm since its
learning phase is very minimal. Although KNN is a simple learning
algorithm, it performs well on many real-world problems. In ad-
dition, KNN is a nonparametric learning algorithm because it does
not require any assumption about the probability distribution of the
dataset.

A limitation of KNN is it is slow and requires a large memory, es-
pecially when the training set has a large number of features or in-
stances. In addition, due to inducing no learning rule, KNN is sensi-
tive to noise especially when K is small.

• Decision Tree (DT)

DT [44] is one of the nonparametric classification algorithms in data
mining, which can be applied to numeric, categorical or mixture data
types. DT maps instances to class labels by building a tree-based pre-
diction model. In a tree, each inner node, called a decision stump,
corresponds to a single feature of the instance. The arc from an inner
node is usually labeled by a value of the feature in the inner node.
Each leaf of the tree is a class label. To classify an instance, its feature
values will be compared with the decision stump in each inner node
until reaching a leaf node. In order to build a tree, the most important
step is to determine which feature and the feature’s value (splitting
point) should be used at each inner node. The most common strat-
egy is a top-down greedy search to select the best feature for each
inner node, which can split the source set into subsets with smallest
impurities. Different DT algorithms use different metrics to measure
the subset’s impurity, for instance, C4.5 [45] uses information gain,
CART [46] uses Gini Index, and CHAID [47] uses Chi-squared test.

Each decision tree model can be seen as a set of “if-then-else” de-

2.1. MACHINE LEARNING 27

cision rules, which makes it simple to understand and interpret. In
addition, it is able to handle both numeric and categorical data. DT is
also robust to noise and scale well with large datasets. However, due
to having only one feature in each inner node, DT usually does not
perform well when there are complex interactions between features
[45].

• Random Forest

In DT algorithms, when a tree grows too deep, it tends to overfit
the training set. In this case, the tree simply models the noise in the
training set rather than represents the relationship between inputs
(features) and output (class label). Breiman [48] proposed a new clas-
sification algorithm, called random forest, which averages multiple
decision trees to reduce the variance. Each random forest contains
a set of decision trees, which are learned from different parts of the
training set. In particular, for each decision tree, its own training
set is constructed by randomly selecting instances with replacements
from the original training set. In addition, the tree learning algorithm
is also modified where at each inner node, a random subset of fea-
tures is used instead of the original feature set. This process is also
known as “feature bagging”. After a number of decision trees are
learned by using their own training sets, they are combined to form a
random forest classifier. The classifier is then classified new/unseen
instances by applying a voting scheme.

• Support Vector Machines (SVMs)

In 1963, SVMs were originally proposed by Vapnik to solve binary
classification problems. Recently, SVMs have been extended to adapt
to multi-class problems [49]. The main goal of SVMs is to build or
construct one or more hyperplanes to split a given dataset into mul-
tiple subsets corresponding to different class labels. There might be
many hyperplanes that can split the data but the selected hyperplane

28 CHAPTER 2. LITERATURE REVIEW

should maximize the distances with its nearest training instances
(called functional margin).

In many practical problems, SVMs achieve good performance [50].
However, users usually have to provide a good kernel function for
SVMs for non-linear cases. In addition, in terms of efficiency, SVMs
have a high computational cost and require a large memory in the
training phase when there is a high number of dimensions [51].

• Bayesian Classifiers

In Bayesian classifiers, a probabilistic model is learned, which is then
used to predict the class label of unseen data. Bayesian classifiers as-
sume that relationships between features and the class label can be
described in terms of probability distributions and the features are
conditionally independent given the class label [34]. Based on the
training set, Bayesian classifiers induce the conditional probability
distribution of each feature given the class label (called likelihood)
as well as the probability distribution of the class label (called prior).
The two distributions are then used to calculate how likely an unseen
instance belongs to each class [52]. One of the most common and
straightforward Bayesian classifiers is Naive Bayes (NB). Although
NB is an efficient classification algorithm, in many real-world prob-
lems, its assumption is violated due to the complex interactions be-
tween features.

2.1.2 Transfer Learning

Machine learning has witnessed a significant improvement during the
past decades, which contributes to many areas such as classification, re-
gression, and clustering. However, most learning algorithms assumes that
the training set and the test set have an identical feature space with the
same distribution. Therefore, any change in the feature space or the distri-
bution leads to a requirement of rebuilding or retraining a learning model

2.1. MACHINE LEARNING 29

using the newly collected training data, which might be difficult or even
impossible task in many real-world applications. It would be desirable to
reuse useful knowledge from an existing similar but not identical source
domain to improve the performance of learning model in the target do-
main, which is the main motivation of transfer learning [36].

Transfer learning is inspired by the fact that human can utilize acquired
knowledge learned in a specific problem to solve a similar problem in a
faster and more efficient way [53]. For example, a person, who already
learned to ride bicycles, can easily learn how to ride a motorbike. Trans-
fer learning has been studied since 1995, which is also known by many
different names such as learning to learn, knowledge transfer, inductive
transfer or multi-task learning [36].

In transfer learning, there are three main questions to answer:

• What to transfer? Each domain has its own knowledge. On the
one hand, some knowledge, which belongs to a specific domain, will
not be useful in the other domain. On the other hand, some knowl-
edge, which is common between different domains, is transferable to
improve the performance on the target domain. Only the common
knowledge should be transferred.

• How to transfer? After the common knowledge is discovered, a
method needs to be developed to transfer this knowledge from the
source domain to the target domain. There are many ways for trans-
ferring knowledge, such as instance-based transfer, feature-based
transfer, which will be reviewed later.

• When to transfer? This is a difficult question which asks for in which
situation knowledge should be transferred. If two domains have
no relationship, knowledge from the source domain might not help
or even cause worse performance in the target domain. However,
discovering the relationship between two domains is usually a chal-
lenging problem, which is still an open issue. Currently, most trans-

30 CHAPTER 2. LITERATURE REVIEW

fer learning algorithms assume that there should be a relationship
between the domains.

Transfer learning approaches

In transfer learning, the task is to optimize performance on one domain
(target domain), given extracted knowledge from a different domain (source
domain), which is related to the target domain. The existing methods to
achieve transfer learning problems can be categorized into four main types
[36]:

• Instance-based transfer learning

These approaches assume that there are some parts of source data
that are usable with a few labeled target instances to improve the tar-
get performance. Most works in this category aim to assign weights
to source instances so that they can match the target domain [54, 55].

• Clustering-based transfer learning

These approaches achieve transfer learning by building a similarity
graph between all instances and the weight on each edge represents
the similarity between two instances [56, 57].

• Parameter-based transfer learning

Parameter-based transfer learning methods can be applied when the
models to learn in the source and target domains have some param-
eters in common, such as SVMs. The learned parameters from the
source domain can be transferred to improve the learning perfor-
mance on the target domain [58].

• Feature-based transfer learning

Feature-based transfer learning approaches aim to find a good com-
mon feature representation, which simultaneously reduces the dif-
ference between the distributions on the source and target domains,

2.2. FEATURE SELECTION 31

and maintains important information of the source and target data.
The common feature representation may contain either some origi-
nal features on both domains [59, 60] or newly built high-level fea-
tures [61, 62].

2.2 Feature Selection

Feature reduction is an important preprocessing technique for classifica-
tion. Feature reduction aims to reduce the dimensionality of a dataset
while maintaining or even improving classification performance over us-
ing all features. There are two main feature reduction approaches which
are feature selection and feature construction. This thesis focuses on fea-
ture selection.

2.2.1 Feature Selection

There are more than one feature selection definitions proposed by researchers,
but most of them are similar in intuition and/or content [63]. These defi-
nitions are illustrated as below:

• Improving predictive accuracy: the aims of feature selection is to
select a small number of features without leading to a significant
reduction of prediction ability of the classifier learned from the se-
lected features [63].

• Preserving conditional distribution: feature selection should find a
subset of features such that the conditional distribution given the
selected features is similar to the conditional distribution given all
the features [63].

• Classical: Given n original features, the task of feature selection is to
select a set of m features (m < n), which has the most optimal fitness
with respect to an evaluation function, over all subsets of sizem [64].

32 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Feature Selection Process

• Idealized: feature selection aims to find the smallest subset of fea-
tures, which is necessary and sufficient to describe the target concept
[65].

In general, the goal of feature selection is to find a minimal subset of
features which is necessary and sufficient to solve classification problems.
This task is achieved by removing irrelevant and redundant features from
the original feature set. By applying feature selection as a data preprocess-
ing step, it is expected that the less complex dataset will help efficiently
train a classifier, which is simpler, more efficient and accurate than using
all features. As can be seen from the above definitions, feature selection
has two main objectives: maximizing the classification performance and
minimizing the number of selected features.

General feature selection process

In general, each feature selection algorithm has four main processes as
shown in Figure 2.1 [66], which are illustrated as below:

• Initialization: In this phase, the feature selection algorithm is initial-
ized according to the original features.

• Subset generation: In this step, one or several candidate feature sub-
sets are generated using a searching mechanism. The starting point
of the searching mechanism can be any feature subsets which can
contain none of the original features, all of the original features or

2.2. FEATURE SELECTION 33

some randomly selected original features. Based on that, the search-
ing mechanism is expected to generate more promising candidate
feature subsets in the following steps.

• Subset evaluation: The goodness of each generated feature subset
is measured by an evaluation criterion, also known as fitness func-
tion. The fitness function guides the searching mechanism to explore
promising regions in the search space. Therefore, designing a good
fitness function is an essential task to any feature selection algorithm.

• Stopping criteria: In general, there are two main stopping criteria,
which are based on generation procedure or the evaluation func-
tion. For instance, the feature selection process can stop when a pre-
defined number of features are selected or the maximum number of
iterations is reached. These are examples of generation procedure-
based criteria. An example of evaluation function stopping criteria
is when the best fitness value is not improved for a finite number of
steps. When the stopping condition is satisfied, the best feature sub-
set is returned as the final feature subset. Otherwise, the two phases:
subset generation and subset evaluation are repeated.

After the final feature subset is generalized, the original dataset is trans-
formed to the new dataset by removing unselected features. New training
and test sets, which are generated from the new dataset, are fed into a
learning algorithm to obtain training and testing accuracies, respectively.
In a feature selection algorithm, the searching mechanism and the evalua-
tion criteria are the most important components which significantly affect
the quality of final feature subsets. The two components are discussed in
more details below.

Searching mechanisms

Feature selection can be seen as an optimization problem, in which the
search space is 2n possible feature subsets where n is the total number of

34 CHAPTER 2. LITERATURE REVIEW

features. More importantly, the interactions between features are complex.
The two characteristics make feature selection a challenging problem; and
it is important to develop an efficient search mechanism for feature selec-
tion. Currently, many searching mechanisms have been applied to find
an optimal or near-optimal feature subset. These search techniques can be
divided into the following categories [67]:

• Exhaustive search: Exhaustive searches consider all possible feature
subsets, which ensures that an optimal subset will be discovered.
An example of this exhaustive search space is FOCUS [68]. How-
ever, these search techniques are impractical when there are a large
number of features due to their expensive computational costs.

• Sequential search: Sequential searches are heuristic searches, in which
a finite steps of adding or removing features are performed to find
an optimal feature subset. At each step, one or more features are
either added or removed from the current feature subsets to form
new subsets with better fitness values. These greedy searches per-
form more efficiently than the exhaustive searches but they do not
guarantee to output an optimal subset. More importantly, sequen-
tial searches usually get stuck at local optima. Some examples of
sequential searches are sequential forward selection [69], sequential
backward selection [70].

• Evolutionary search: Evolutionary searches are also a kind of heuris-
tic search. However, not like sequential searches, evolutionary searches
have potential global search abilities which can cope with the large
and complex search spaces of feature selection. Some examples of
the evolutionary search are GP, PSO and GAs.

Evaluation criteria

Beside search strategies, evaluation criteria also play an important role in
a feature selection algorithm. The searching for an optimal subset is to find

2.2. FEATURE SELECTION 35

a subset with the best fitness value with respect to an evaluation function.
In other words, fitness functions guide the search strategy to generate a
new feature subset with better fitness value than the old one. Based on the
evaluation approach, current feature selection algorithms can be divided
into three types: filter, wrapper and embedded approaches [71].

• Wrapper approach

Figure 2.2(a) [72] shows the diagram of a wrapper-based feature se-
lection approach. In a wrapper approach, a classification algorithm
is used to evaluate a candidate feature subset. The most discrim-
inative feature subset is searching by maximizing the classification
performance. Some common learning algorithms, used as a black
box to evaluate the feature set, are KNN, DT, and SVM. In compar-
ison with other methods, wrappers usually achieve better classifi-
cation performance because they consider the direct interactions be-
tween the feature subset, the class, and the wrapped classification
algorithm. However, the selected feature subset is optimized specifi-
cally for a learning algorithm. Therefore, a wrapper approach is less
general than a filter approach. In addition, during the searching pro-
cess, a classification algorithm is repeatedly trained to evaluate fea-
ture subsets, which usually causes a long computational time. There-
fore, wrapper approaches are usually more expensive than other ap-
proaches.

• Filter approach

Figure 2.2(b) [72] shows the diagram of a filter-based feature selec-
tion approach. In a filter-based method, instead of using the classi-
fication performance, a feature subset is evaluated based on intrin-
sic characteristics of a dataset. Because the feature subset is evalu-
ated in an independent way of any learning algorithm, filters pro-
vide more general solutions than wrappers [73]. In addition, filters
are also less computationally intensive than wrappers. However,

36 CHAPTER 2. LITERATURE REVIEW

(a) Wrapper

(b) Filter

(c) Embedded

Figure 2.2: Feature Selection Categories

2.2. FEATURE SELECTION 37

since these methods do not take into account the interaction between
the selected feature subset and the learning algorithm, they usually
achieve lower classification accuracies than wrappers [74]. In the
past decades, different types of filter measures have been applied to
feature selection.

– Distance measure: According to this measure, the more differ-
ent between the conditional probabilities that instances belong
to different class labels, the better the set of features. An exam-
ple of this measure is ReliefF [75].

– Correlation measure: A correlation measure is used to evaluate
how dependent two random variables are. A feature subset is
good if it contains features highly correlated to the class, but
uncorrelated to each other. This measure has been applied to
achieve feature selection problems [21].

– Consistency measure: Consistency measure [20] attempts to
find a minimum number of features that can separate classes
as consistently as the full set of features. An inconsistency is
defined when two instances having the same feature values but
different class labels. The task is to find a minimal size subset of
features that satisfies an acceptable inconsistency rate.

– Information measure: Mutual information is a well-known con-
cept in information theory [76], which is used to measure the
relevance between two or more random variables. Feature se-
lection aims to select a feature subset, which is highly relevant
to the class label and contains no redundant features. There-
fore, a good feature subset should have high mutual informa-
tion with the class label and low mutual information between
inner features. Because mutual information can detect non-linear
feature interactions easier than other measures, it is gaining more
attention in the feature selection community recently.

38 CHAPTER 2. LITERATURE REVIEW

• Embedded approach

In an embedded approach, feature selection is embedded into the
training process of a classification algorithm. Once the classification
algorithm is trained, the features used in the classifier are selected.
In comparison with wrappers, embedded approaches are more effi-
cient and may still maintain a good classification performance. DT is
an example of the embedded-based feature selection approach. Par-
ticularly, features used in the final tree are considered a good fea-
ture set. SVM can also be used in an embedded-based feature se-
lection approach where each weight in the learned SVM model can
be considered as the importance of the corresponding feature. Fig-
ure 2.2(c) shows the diagram of an embedded-based feature selection
approach.

2.2.2 Feature Construction

In many difficult real-world problems, classification algorithms, especially
symbolic algorithms such as decision trees, cannot be trained to be a good
classifier using the set of individual features [77]. Feature selection might
help to induce a good feature subset, which contains only relevant fea-
tures without any redundancy. However, inducing the relationship be-
tween single features to help improve the classification performance is
also a challenging problem. This problem can be partially solved by fea-
ture construction. Feature construction aims to create new high-level fea-
tures, which can be seen as a function of some original features; the new
features are expected to improve the classification performance [78]. A
feature construction system is similar to a feature selection system, which
usually aims to transform the original representation space into a lower-
dimension one to improve the classification performance. In general, a
feature construction process also has four steps:

• Initialization: In this phase, the feature construction algorithm is ini-

2.3. EVOLUTIONARY COMPUTATION 39

tialized.

• High-level features generation: In this step, a number of new high-
level features are constructed based on the original feature space.
The key challenge is to design which original features and which
operators are used in the constructing process. It is important to
select a good set of operators which are suitable for the feature set. In
addition, the number of new-high level features is also an important
parameter.

• Feature evaluation: Similar to feature selection, the new high-level
features are evaluated to guide the searching process. In the eval-
uation process, it is important to consider the interactions between
new features, which ensures that the new features can cooperate to
produce a good classification performance without any redundancy.

• Stopping criteria: The feature construction process output the final
set of new high-level features when the stopping condition is met.

Both feature selection and feature construction can reduce the number
of features. However, feature selection preserves meanings of the original
features, while feature construction builds new high-level features which
might be difficult to interpret. Therefore, this thesis focuses on feature
selection.

2.3 Evolutionary Computation

Evolutionary Computation (EC) is a sub-field of artificial intelligence, which
is inspired by principles of biological evolution. Most EC algorithms main-
tain a population, which consists of a set of candidate solutions. The pop-
ulation is maintained and evolved by an updating mechanism to search
for better solutions according to a predefined fitness function. In general,

40 CHAPTER 2. LITERATURE REVIEW

EC methods can be divided into two main categories: evolutionary algo-
rithms and swarm intelligence.

2.3.1 Evolutionary Algorithms (EAs)

EAs refer to the evolutionary algorithms which follow Darwinian princi-
ples. In particular, these algorithms apply genetic operators such as muta-
tion, crossover, reproduction, and selection to evolve a population of indi-
viduals. The individuals compete to survive based on their fitness values.
There are four main evolutionary algorithms:

• Genetic Algorithms (GAs) [79]

GAs were probably the first EA. In GAs, each individual is repre-
sented by a fixed-length vector, which is usually called a chromo-
some. The vector entries can be either real numbers, integers or bit
values. The evolution process is performed by four genetic opera-
tors: selection, mutation, crossover, and reproduction.

• Evolutionary Strategies (ES) [80]

In terms of representation, ES is similar to GAs where each individ-
ual is represented by a fixed-length vector. The main difference is ES
mainly relies on the mutation operator to evolve its population. In
addition, the selection in ES is deterministic.

• Genetic Programming (GP) [81]

GP can automatically evolve a computer program to solve a specific
task. In GP, each candidate program is represented by a variable-
length tree-based representation. Because of the flexible represen-
tation, GP has been widely applied to a wide range of real-world
problems. The evolution process of a population in GP is similar to
GAs, which are mainly based on mutation and crossover operators.

• Evolutionary Programming (EP) [82]

2.3. EVOLUTIONARY COMPUTATION 41

EP is used mainly to evolve finite state machines (FSM) where each
FSM is a program. Therefore, the representation of an individual in
EP is similar to GP except for the program’s structure is fixed. The
main genetic operator in EP is the mutation operator.

2.3.2 Swarm Intelligence (SI)

SI algorithms are inspired by the behaviors of social insects. In these al-
gorithms, a population consists of a set of individuals, which parallelly
explore the search space. The individuals then share their knowledge
about the search space to other members. The sharing mechanism helps
the whole swarm move toward the better positions in the search space,
which eventually converges to an optimum [83]. Particle Swarm Opti-
mization, Ant Colony Optimization, and Differential Evolution are three
well-known SI algorithms.

• Particle Swarm Optimization (PSO) [7]

In PSO, the set of individuals is called a swarm. Each individual
maintains its best position and its neighbors’ best position. The two
bests are expected to guide each individual towards better positions.

• Ant Colony Optimization (ACO) [84]

ACO is inspired by the foraging behavior of ant colonies which aims
to find the shortest path from their colony to a food source. The can-
didate solutions are called ants in ACO. During the searching pro-
cess, each ant deposits an amount of pheromone on its favorite path
which attracts other ants to follow this path. The “best” solution is
the path has the largest amount of pheromone.

• Differential Evolution (DE) [85]

DE was proposed by Storn and Price in 1995 [85]. DE is different
from PSO and GAs regarding its mechanism to generate new candi-
date solutions. In DE, the population evolves by three operators:

42 CHAPTER 2. LITERATURE REVIEW

mutation, crossover, and selection. Although the three operators
have the same names as those in GAs, their functionalities are very
different. Not like GAs, all DE individuals or vectors are involved in
the evolutionary process. The mutation operator builds a new vec-
tor, called mutant, by combining three random vectors (excluding
the target one) that are not necessarily the best ones as in PSO. The
crossover operator then builds a trial vector by setting each vector
entry to an entry value selected from either the mutant vector or the
target vector. The selection process selects the better one among the
trial vector and the target vector.

Apart from the mentioned EC methods, there are also other popular
EC methods such as Learning Classifier System (LCS) [86], and Artificial
Immune Systems (AIS) [87].

2.3.3 Particle Swarm Optimization

PSO [30] is an evolutionary computation method, which is inspired by the
social behaviors of bird flocking. In PSO, a problem is optimized by using
a population of particles, called a swarm. In order to find the optimal solu-
tion, each particle moves around the search space by updating its position
and velocity. Particularly, the current position of particle is represented
by a vector xi = (xi1, xi2, . . . , xiD), where D is the dimensionality of the
search space. These positions are updated by using another vector, called
velocity vi = (vi1, vi2, . . . , viD), which is limited by a predefined maximum
velocity, vmax and vid ∈ [−vmax, vmax]. During the searching process, each
particle maintains a record of its best position, called pbest, and its neigh-
bors’ best position, called nbest. If each particle shares its information with
all other particles, all particles have the same nbest, which is usually called
gbest. The position and velocity of each particle are updated according to
the following equations:

vt+1
id = w × vtid + c1 × ri1 × (pbestid − xtid) + c2 × ri2 × (gbestid − xtid) (2.1)

2.3. EVOLUTIONARY COMPUTATION 43

Figure 2.3: Flowchart of PSO

xt+1
id = xtid + vt+1

id (2.2)

where t denotes the tth iteration in the search process, d is the dth dimen-
sion in the search space, i is the index of particle, w is inertia weight, c1
and c2 are acceleration constants, ri1 and ri2 are random values uniformly
distributed in [0,1], pbestid and gbestid represent the position entry of pbest
and gbest in the dth dimension, respectively. The general process of PSO is
given in Figure 2.3.

Binary PSO (BPSO)

PSO was originally developed to address continuous optimization prob-
lems. Therefore, both position and velocity are vectors of real numbers.
However, this representation is not suitable for problems having discrete
search spaces. For example, a feature selection problem has a discrete
search space, more specifically a binary search space, where a feature is ei-
ther included or excluded in a feature subset. In 1997, Kennedy and Eber-
hart [88] proposed binary particle swarm optimization (BPSO). In BPSO,

44 CHAPTER 2. LITERATURE REVIEW

the position of each particle is a vector of binary numbers, which are re-
stricted to either 0 or 1. Each entry vi of the velocity is used to calculate
the probability that the corresponding element in the position vector, xi,
taking value 1. The velocity of each particle is still updated by using Eq.
(2.1). A new equation (2.3), which uses a sigmoid function, is applied to
update the particle position.

xid =

1 , if rand() < s(vid)

0 , otherwise
(2.3)

s(vid) =
1

1 + e−vid
(2.4)

where rand() is a random number selected from a uniform distribution in
[0,1].

BPSO has been applied to many real-world problems. Sarath et al. [89]
applied BPSO to generate association rules from transactional datasets.
The results on a dataset from an Indian commercial bank showed that ap-
plying BPSO not only provided higher quality rules but also avoided re-
dundant rules. Taha et al. [90] used BPSO to detect available frequencies
in cognitive radio, which allowed to utilize system resources. The BPSO-
based dynamic allocation achieved higher detection rates and lower false
alarm rates with different noise ratios. Lin et al. [91] used BPSO to search
for highly profitable item sets instead of frequent item sets in transactional
databases. It was shown that the BPSO-based algorithm was more effi-
cient, more effective and converged faster than GAs.

In many other works, BPSO has also been modified to improve its per-
formance. In the original BPSO [29], a sigmoid-function was used as a
transfer function known as a S-shaped function. In [92], V-shaped transfer
functions were proposed for BPSO. The position updating equation also
considered the previous location. The experimental results showed that
applying V-shaped functions while considering the previous location im-
proved the performance of BPSO. However, it was not clear that which

2.3. EVOLUTIONARY COMPUTATION 45

modification contributed more to the improvement. The performance of
BPSO on different datasets heavily depended on the specific transfer func-
tions, even when they were from the same family (V-shaped or S-shaped).
Hence, it was not an easy task to select an appropriate transfer function
for a particular task or dataset.

Zhang et al. [93] used BPSO for feature selection, which aimed to im-
prove the performance in spam detection problems. A mutation opera-
tor was used to increase the diversity of the swarm and avoid premature
convergence. The experimental results indicated that the proposed algo-
rithm achieved better results than GAs and the standard PSO algorithm.
Yang et al. [94] attempted to allocate workload to sensors in a network so
that the system was more energy-efficient and the communication volume
was reduced. The BPSO algorithm with a V-shape function, a new updat-
ing equation, and mutation operators, was proposed. The BPSO algorithm
outperformed GAs and standard BPSO. However, the modifications in the
two proposed BPSO algorithms still ignored the previous location. Aiman
et al. [95] modified BPSO to achieve a good state assignment on a finite
state machine, which aimed to minimize the area of sequential circuits.
The authors proposed an updating equation for velocity, which consid-
ered the correlation between pbest and gbest. Although the experimen-
tal results showed that the modified BPSO algorithm was more effective
than standard BPSO and GAs, it has potential that the swarm would be
stuck at local optima when pbest and gbest had the same position. Zhai et
al. [96] improved a BPSO-based instance selection algorithm by utilizing
an immune mechanism. Before updating the swarm, some particles were
modified based on the numbers of their good neighbors (vaccine value)
and current positions. The experimental results on datasets with differ-
ent numbers of instances showed that the immune BPSO outperformed
both standard BPSO and INSIGHT, which was a deterministic instance se-
lection algorithm, in terms of the classification accuracy and the size of
instance subsets. It could be seen that considering the previous position

46 CHAPTER 2. LITERATURE REVIEW

in BPSO has a positive effect. However, the proposed algorithm was de-
signed specifically for instance selection.

In 2016, Liu et al. [97] provided an analysis about the effect of the iner-
tia weight parameter on the searching ability of BPSO. Particularly, it was
shown that when the two bests were not changed, a larger inertia weight
tended to enhance the exploitation ability, which was opposite to contin-
uous PSO (CPSO). Based on this observation, an incremental strategy for
the inertia weight was defined as follows:

w =

w + π×(w−w)
ρ×π , if π ≤ ρπ

w, if ρπ < π ≤ π
(2.5)

where π and π were the current iteration and the maximum number of
iterations, w and w were the upper and lower boundaries of w, ρ was a
parameter in the interval [0,1], which was used to determine the number
of iterations to increase w from w to w. In the first ρ × π iterations, the
inertia weight was linearly increased from w to w. The inertia weight w
was not changed in the following iterations.

Based on the analysis, Liu et al. [97] proposed a BPSO algorithm named
Up BPSO, which outperformed the standard BPSO algorithm with a con-
stant and a linearly decreasing inertia weight. Up BPSO was already ap-
plied to achieve web-service allocation [98], which aimed to minimize net-
work latency and cost to deploy servers.

Existing works demonstrate the need of BPSO to solve binary prob-
lems. However, BPSO still has limited performance in comparison with
continuous PSO [99], which requires additional modifications for BPSO to
improve its performance. Despite the fact that many modifications have
been made, not much research considers the core reason which is the in-
appropriate application of continuous velocity and momentum concepts
to BPSO.

2.4. MULTI-OBJECTIVE OPTIMIZATION 47

2.4 Multi-objective Optimization

In a multi-objective problem, two or more conflicting objectives are opti-
mized simultaneously. An o-objective minimization problem can be writ-
ten as follows.

Minimize f(x) = (f1(x), f2(x), ..., fo(x)) (2.6)

subject to gi(x) ≤ 0, i = 1, 2, ..., k

hi(x) = 0, i = 1, 2, ..., l

where f(x) is a vector of objectives, fi(x) is the ith objective, x is a decision
vector, gi(x) and hi(x) are the constraint functions of the problem.

The quality of a solution is determined by the trade-off between the
objectives. Specifically, a solution y is better than a solution z if and only
if:

∀i: fi(y) ≤ fi(z) and ∃j: fj(y) < fj(z) (2.7)

It can be said that y dominates z. If a solution is not dominated by any
other feasible solutions, the solution is called a Pareto optimal solution.
The set of all Pareto optimal solutions form a trade-off surface in the ob-
jective space, which is called the true Pareto front. The task of any multi-
objective algorithm is to evolve a set of well-distributed non-dominated
solutions, which is a good approximation of the true Pareto front. Fea-
ture selection can be considered a two-objective minimization problem, in
which the number of features and the classification error rate need to be
minimized.

2.4.1 Evolutionary Multi-objective Algorithm (EMO)

As a family of population-based optimization algorithms, EC is widely ap-
plied to solve multi-objective problems since it can naturally evolve a set
of non-dominated solutions. The EC-based multi-objective algorithms are

48 CHAPTER 2. LITERATURE REVIEW

called Evolutionary Multi-objective Optimization Algorithms (EMO). Ba-
sically, EMO can be divided into three main categories: Pareto dominance-
based algorithms, indicator-based algorithms, and decomposition-based
algorithms [100].

Pareto dominance-based algorithms

The main idea of these algorithms is to sort their populations based on
Pareto dominance. The obtained ranking is used as the main part of a
fitness function. Typical Pareto dominance-based algorithms can be seen
as below:

• Non-dominated Sorting based Multi-objective Genetic Algorithm
II (NSGA-II) [101]

NSGA-II follows the same principle as GAs, which applies genetic
operators to generate offspring from parents. NSGA-II uses a fast
non-dominated sorting technique to rank the union of generated off-
springs and parents to different levels of non-dominated solutions.
The non-dominated solutions in the same level are then further ranked
according to their crowding distances, which is expected to maintain
the diversity of the population. The crowding distance of a point is
the average distance between two closest points on both sides of the
point along each objective. The next population is then filled with
the top-ranked solutions.

• Strength Pareto Evolutionary Algorithm 2 (SPEA2) [102]

Different from NSGA-II, SPEA2 maintains a set of non-dominated
solutions called an archive set. SPEA2 assigns fitness values to each
individual in both archive set and the population. The fitness func-
tion contains two parts: raw fitness (the strength of a candidate solu-
tion) and a density measure (distance from the candidate solution to its
kth nearest neighbor). During the evolutionary process, one or more

2.4. MULTI-OBJECTIVE OPTIMIZATION 49

candidate solutions can be added or removed from the archive set
according to the fitness values or the density measure, respectively.

• Multi-objective PSO (MOPSO) [103]

MOPSO follows the main ideas of PSO except for how to determine
gbest. The reason is that in a multi-objective problem, instead of a
single best solution there is a set of non-dominated solutions. OMOPSO
[104], one of the most well-known MOPSO algorithms, maintains an
archive to store the non-dominated solutions. A crowding distance
is used to select an archive member as a gbest for each particle.

Decomposition-based algorithms

These algorithms transform a multi-objective problem into several single-
objective sub-problems. The final set of non-dominated solutions can be
obtained by combining solutions from all sub-problems. MOEA/D (Multi-
objective Evolutionary Algorithm based on Decomposition) [31] is a rep-
resentative of decomposition-based EMO algorithms. Standard MOEA/D
decomposes a multi-objective algorithm using a set of weight vectors. Each
single-objective sub-problem has its corresponding weight vector w, which
is used to build a fitness function. The task in the sub-problem is to find
an optimal solution with respect to the fitness function. Each sub-problem
has one candidate solution, so the number of decomposed single-objective
sub-problems is equal to the population size. Each sub-problem has other
T sub-problems as its neighbors. The neighborhood relations are defined
by the distance between the weight vectors. It is expected that the so-
lutions of neighboring sub-problems should be similar so that each sub-
problem can improve its solution by using information from its neighbors.

Given an o-objectives problem, each weight vectors has o elements, w
= (w1, w2, ..., wo), which satisfies the following conditions

o∑
i=1

wi = 1 and wi ∈
{

0,
1

M
,

2

M
, ...,

M

M

}
(2.8)

50 CHAPTER 2. LITERATURE REVIEW

whereM is a predefined positive integer. For two-objective problems,M is
the number of sub-problems, which is also the population size [31]. There
are various ways to aggregate multiple objectives into a single scalar func-
tion, in which Weighted Sum, Tchebycheff, and Penalty-based Boundary
Intersection are three common approaches [105].

A good set of weight vectors can generate a good approximation of the
Pareto front, but defining an appropriate set of weight vectors is a diffi-
cult task in MOEA/D since it depends strongly on the shape of the true
Pareto front [106]. Many attempts have been made to adjust weight vec-
tors dynamically during the evolutionary process to cope with different
complicated Pareto front shapes [107, 108]. However, most approaches
depended on the true Pareto front consisting of continuous regions (if not
being fully continuous). It is not clear how they can be made to work on
problems with highly discontinuous or discrete Pareto fronts, which is a
characteristic of multi-objective feature selection.

Indicator-based algorithms

The idea of these algorithms is to use an indicator measure to evaluate the
quality of a set of non-dominated solutions. One of the most well-known
indicators is hypervolume [109], which is used in the S Metric Selection
Evolutionary Multi-objective Optimization Algorithm (SMS-EMOA) [110].
However, indicator values are usually computationally intensive, which
makes indicator-based algorithms less popular in comparison with the
other two EMO categories.

2.5 Information Theory

2.5.1 Basic Concepts

Entropy, one of the core concepts in information theory [111], is used to
measure the uncertainty or the amount of information of a random vari-

2.5. INFORMATION THEORY 51

able. Given X is a discrete variable, its entropy can be calculated by the
following formula:

H(X) = −
∑
x∈X

P (X = x)× log2 P (X = x) (2.9)

Entropy can be extended to measure the uncertainty of a joint variable,
which consists of more than one random variable. The joint entropy can
be defined as:

H(X1, . . . , Xn) = −
∑
xi∈Xi
i=1...n

p(x1, . . . , xn)× log2 p(x1, . . . , xn) (2.10)

where p(x1, . . . , xn) = P (X1 = x1, . . . , Xn = xn)

Mutual information is another important concept in information the-
ory. Mutual information is used to calculate the common information be-
tween two random variables. Mutual information is a symmetric measure,
which is defined by the following formula:

MI(X;Y) = H(X) +H(Y)−H(X, Y)

=
∑

x∈X,y∈Y

p(x, y)× log2

p(x, y)

p(x)× p(y)
(2.11)

where p(x, y) is the joint probability distribution function. According to
Eq. (2.11), if X and Y are totally independent, which means p(x, y) =

p(x) × p(y), then the mutual information between X and Y becomes 0.
On the other hand, if there is a strong relationship between X and Y then
MI(X;Y) will be large. If X and Y are two continuous variables, mutual
information is extended by replacing the summation by a definite double
integral as below:

MI(X;Y) =

∫
X

∫
Y

p(x, y)× log2

p(x, y)

p(x)× p(y)
dx dy (2.12)

where p(x), p(y) and p(x, y) are probability density functions.
Mutual information is also extended in many ways to measure the

common information between more than two random variables. Suppose

52 CHAPTER 2. LITERATURE REVIEW

that S is a joint variable, which consists ofm single variables. Multi-variate
information (MvI) or interaction information is used to measure the com-
mon between all variables’ information. The interaction information of a
joint variable S = {s1, . . . , sm} is calculated using Eq. (2.13).

MvI(S) = −
∑
U⊆S

(−1)|S|−|U |H(U) (2.13)

There is also another extension of MI, called “total correlation infor-
mation” (TCI) [112], which measures the common information between
any variable subsets of S. TCI can be computed by using the following
equation:

TCI(S) =
∑
si∈S

H(si)−H(s1, s2, . . . , sm) (2.14)

where m is the total number of single feature/variable (si) in the joint fea-
ture/variable (S).

2.5.2 Mutual Information Calculation

In order to calculate the mutual information between two or more vari-
ables/features, it is necessary to know the probability distribution of each
variable as well as the joint probability distribution. The trivial way is
to derive the distributions by counting instances with each possible value
of the features, which is known as the counting approach. Although this
approach is efficient, it only works on discrete datasets.

Mutual information estimation is another approach to calculate mutual
information. The oldest and simplest estimator is the “basic histogram”
[113], in which each dimension corresponding to one variable is divided
into many non-overlapping bins with a fixed size. The probability distri-
bution of each “bin” is calculated as a ratio between the number of obser-
vations falling into the bin and the total number of observations. There-
fore, each bin is considered a possible value of a single variable or a joint

2.5. INFORMATION THEORY 53

variable. The entropy of each single/joint variable can be calculated by
applying the discretized version given in Eq. (2.9) and then the mutual
information can be acquired according to the formula Eq. (2.11). In this
approach, there are two most important parameters, which are the num-
ber of bins and the bin’s size.

The basic histogram is sensitive to the parameter selections. In addi-
tion, histogram approaches have sharp boundaries, which means that two
similar instances on different sides of the boundary are considered differ-
ent values. To avoid this discontinuity, Parzen et al. [114] proposed kernel
density estimation (KDE). This approach estimated the probability density
of each instance with a kernel function Θ, which is shown in Eq. (2.15).

p̂(Si) =
1

N
×

N∑
i′=1

Θ (|Si − Si′| − r) (2.15)

where Θ is the kernel function and r is the kernel width, |.| is a norm and
N is the total number of instances.

The kernel function Θ measures the similarity between two instances
of feature set S, Si, and Si′ . Normally, the Θ is a step function, which
means that Θ(X > 0) = 0 and Θ(X ≤ 0) = 1. The norm |.| is the maximum
norm. Therefore, the probability estimated by Eq. (2.15) is the proportion
of the N instances, whose distances to the instance Si are less than r. The
entropy of the joint variable or feature subset S is then achieved by aver-
aging the local entropy of all instances, which can be seen in Eq. (2.16).
The calculated entropies are plugged in Eq. (2.11) to derive the mutual
information estimation.

Ĥ(S) =
1

N
×

N∑
i=1

−p̂(Si)× log p̂(Si) (2.16)

Besides KDE, recently Kraskov et al. [115] proposed another estimation
approach, called Nearest Neighbor Estimation (NNE). Similar to KDE,
NNE also works on each instance. The main idea of NNE is if neighbors

54 CHAPTER 2. LITERATURE REVIEW

of an instance on two dimensions X and Y are similar, then there must be
a strong relationship between X and Y . Particularly, for each instance i,
K nearest neighbors of the instance are found to derive the distance ε(i),
which is then used as a boundary to define the neighbors of the instance
on each dimension (feature). The boundary ε(i) is twice the distance from
the ith instance to its K th nearest neighbor. On each dimension j, the num-
ber of instances whose distances to the ith instance is smaller than ε(i) is
counted. The resulting number is denoted as nij which is used to estimate
the mutual information using Eq. (2.17).

M̂I(S) = ψ(k)− m− 1

K
+ (m− 1)× ψ(N)− 1

N
×

N∑
i=1

m∑
j=1

nij (2.17)

where ψ is a digamma function, m is the number of single variables (fea-
tures) in the variable (feature) set S.

Therefore, NNE can be seen as an improvement of KDE, where the
boundary r is dynamically determined by the number of nearest neighbors
K. Both estimators are implemented in Java Information Dynamics Toolkit
(JIDT), an information-theoretic toolkit developed by Lizier et al. [116].

2.6 Traditional Techniques (non-EC) for Feature

Selection

A basic version of feature selection is feature ranking [66], where a score
is assigned to each feature according to an evaluation criterion. Feature
selection can be achieved by selecting the features with the highest scores.
However, this type of algorithm ignores the interactions between features.
Additionally, the features with the highest scores are usually similar. There-
fore, these algorithms tend to select redundant features.

Sequential search techniques have been applied to solve feature selec-
tion problems. In particular, sequential forward selection (SFS) [69] and

2.6. TRADITIONAL TECHNIQUES (NON-EC) FOR FEATURE SELECTION55

sequential backward selection (SBS) [70] are proposed. At each step of the
selection process, SFS (or SBS) adds (or removes) a feature from an empty
(full) feature set. Although these local search techniques often achieve bet-
ter performance than the feature ranking method, they might suffer from
the “nesting” problem, in which once a feature is added (or removed)
from the feature set, it cannot be removed (or added) later. In order to
avoid “nesting” effect, Stearns et al. [117] proposed a “plus-l-takeaway-
r” method in which SFS was applied l times forward and then SBS was
applied for r backtracking steps. However, it is challenging to determine
the best values of (l,r). This problem is addressed by sequential backward
floating selection (SBFS) and sequential forward floating selection (SFFS),
proposed by Pudil et al.[118]. In SBFS ad SFFS, the values (l, r) are dy-
namically determined rather than being fixed in the “plus-l-takeaway-r”
method. Later, Nakariyakul et al. [119] propose a method named IFFS
which further improves the sequential searches using an additional step
replacing weak features in the current feature subset by an unselected fea-
ture. The experimental results show that IFFS achieves better performance
than other sequential search algorithms. Mutual information is also used
with sequential searches to achieve feature selection [120, 121, 122].

Another approach is to use regularization models for feature selection.
This can be considered an embedded-based feature selection approach
since when the model is trained as a classifier to minimize the classifi-
cation error, some of its coefficients are forced to be very small or to be
exactly zero. Feature selection can be achieved by selecting features with
nonzero coefficients [123, 124]. Particularly, given a dataset contains N
instances {X,Y}, where X = {x1, x2, ..., xN } is the feature values of the N in-
stances and Y = {y1, y2, ..., yN } is the class labels of the N instances. The
task of regularization-based feature selection is to find the optimal weight
vector w which minimizes the following fitness function:

Fitness(w) = loss(w,X) + α× penalty(w) (2.18)

where loss(.) is the classification error and penalty() is the regularization

56 CHAPTER 2. LITERATURE REVIEW

term which forces some weights in w to be close to 0. Some common
choices of loss(.) are quadratic loss, hinge loss, and logistic loss. The penalty(w)

can use the `1 form, which is penalty(w) =
∑N

i=1 |wi| [125]. These methods
gain increasing attention because of its good performance [126, 127]. How-
ever, since these methods select features based on the feature’s weight,
they are likely to miss the interactions between features.

2.7 EC-based Feature Selection

EC techniques have been widely applied to feature selection because of
their global search ability. More importantly, EC algorithms have an ad-
vantage of coping with either single-objective problems or multi-objective
problems, which is the case for feature selection.

2.7.1 Single-objective Feature Selection

Single-objective feature selection is achieved by many EC algorithms such
as GAs, PSO, GP or DE. Since this thesis focuses on applying PSO to
achieve feature selection, the PSO-based feature selections are reviewed
first, then other EC-based feature selection algorithms are reviewed later.

PSO for feature selection

Both continuous and binary PSO have been widely applied to wrapper-
based or filter-based feature selection. In general, each particle’s position
is represented by a vector, in which each entry corresponds to an original
feature and indicates whether that feature is selected or not. In continuous
PSO, each entry is a real number, which falls in the range [0,1]. A threshold
θ is used to determine whether or not a feature is selected. In particular,
if the entry’s value is greater than θ, the corresponding feature is selected.
Otherwise, the corresponding feature is not selected. Binary PSO has more

2.7. EC-BASED FEATURE SELECTION 57

natural representation, in which each entry is either 0 or 1. A feature is
selected if and only if its corresponding bit value is 1.

• PSO for wrapper-based feature selection

In wrapper-based feature selection approaches, different classifica-
tion algorithms were used to evaluate the solution’s fitness, for in-
stance SVMs, KNN, ANNs. Many ideas have been proposed to im-
prove the performance of PSO-based feature selection algorithms.
These ideas included modifications in the initialization strategy, rep-
resentation, fitness function or searching mechanisms. In [128], Xue
et al. proposed three new initialization mechanisms, which mimic
the sequential feature selection approach. While the small initializa-
tion used about 10% of the original features to initialize the particles,
particles in the large initialization were built based on 50% of origi-
nal features. These two initialization mechanisms were combined in
the mixed initialization, which used the small initialization for most
of particles and the large initialization for the rest. In addition, three
new updating mechanisms for pbest and gbest were proposed in the
paper. The experimental results showed that the new initialization
and updating mechanisms led to smaller feature subsets with better
classification performance than the standard PSO and the two-stage
binary PSO algorithm [129, 130].

In [131], Vieira et al. proposed a new representation for binary PSO,
which simultaneously performed feature selection and optimized
the SVM kernel parameters. Particularly, each entry corresponded
to an original feature or a kernel parameter, which resulted in the
length of the new representation was equal to the total number of
features and kernel parameters. Experimental results showed that
the proposed algorithm achieved better classification performance
than other binary PSO-based feature selection algorithms [132, 133]
and selected smaller feature subsets than a GA-based feature selec-

58 CHAPTER 2. LITERATURE REVIEW

tion algorithm [134]. This representation was also applied in con-
tinuous encoding [135] and a mixture of binary and continuous en-
coding [136]. Lane et al. [137] applied statistical clustering, which
grouped similar features into one cluster. In particular, the proposed
method arranged the features in the same cluster together and se-
lected a single feature from each cluster. The results showed that the
proposed algorithms significantly reduced the number of selected
features, which was equal to the number of clusters. Lane et al.
[138] further improved his work by applying Gaussian distribution
to select more than one features from each cluster. Particularly, a
Gaussian distribution was used to determine the number of selected
features (m) from each cluster and m features with the highest ve-
locity in a certain cluster were selected. Later, Nguyen et al. [139]
also applied statistical clustering to propose a new representation,
which had lower dimensionality than the traditional representation.
Particularly, a maximum number of selected features from each clus-
ter, which was smaller than the total features from the cluster, was
determined. Each position entry belonged to a certain cluster and
presented a feature index from the cluster. The experimental results
indicated that the proposed algorithms achieved better classification
performance and selected a smaller number of features than two
other PSO-based algorithms. However, in the new representation
a small change of the position might not lead to any different feature
subset. Therefore, Nguyen et al. [140] applied Gaussian distribution
to propose a new transformation rule, which could form a smoother
fitness landscape than the representation in [139].

Premature convergence is a typical problem of PSO, in which the
swarm is stuck in local optima. In order to avoid this problem, Chuang
et al. [132] proposed a gbest resetting mechanism, which set all gbest
position’s elements to zero when the best fitness did not change for
a finite number iterations. The experimental results showed that the

2.7. EC-BASED FEATURE SELECTION 59

resetting mechanism helped PSO to evolve a smaller set of features
with higher classification accuracy than [141] in most cases. Later,
Tran et al. [142] also applied this resetting mechanism cooperating
with local searches on pbest to simultaneously reduced the number
of selected features and improved the classification performance. In
addition, the new fitness calculation was proposed, which was based
on the changed features (selected to not selected or vice-versa). The
proposed algorithm achieved smaller feature subset with lower clas-
sification error than [132]. Mistry et al. [143] embedded the concept
of a micro-genetic algorithm (mGA) to improve the swarm diver-
sity. The proposed algorithm used a small secondary swarm to ex-
plore five feature subsections. By alternatively selecting the lowest
and highest correlation particles from the original swarm to form
the secondary swarm, the proposed algorithm could balance local
exploitation and global exploration. In addition, the pbest and gbest

were modified using an averaging search strategy and a Gaussian
mutation which also enhanced the local exploitation and global ex-
ploration. The experimental results showed that the proposed algo-
rithm outperformed conventional GAs and PSO-based feature selec-
tion algorithms on facial emotion recognition. However, in a general
feature selection problem, it is usually difficult to divide the feature
space into many feature subsections due to the complex interactions
between features. A recent attempt to avoid premature convergence
was done by Cheng et al. [144]. In the proposed PSO algorithm,
gbest and pbest were removed. The particles had to enter a competi-
tion and the winners went directly to the new population. The losers
had to learn from the winners i.e. their positions were updated with
respect to the positions of the winners, and then they could enter
the new population. The proposed algorithm was called a compet-
itive swarm optimizer, which worked well on large scale optimiza-
tion problems. This modification of PSO was applied to feature se-

60 CHAPTER 2. LITERATURE REVIEW

lection by Gu et al. [145].

There is not much attempt to reduce the computational costs of wrap-
per PSO-based feature selection. Shortening the length of particles is
an option, which is done in [137, 138, 139]. Although the computa-
tion time is reduced, the evaluation time mainly remains the same
as standard PSO-based feature selection. The improvement is from
the updating position process and the upper bound of the number of
selected features. [146] directly modify the fitness measure by split-
ting a training set into many subsets. From each subset, a number
of features are selected and then all selected features are combined
to form the final feature subset. However, it is possible that features
selected from different subsets might be redundant.

• PSO for filter-based feature selection

In order to solve feature selection problems, PSO has been used with
different filter measures, for example, rough set theory [147, 148, 149,
150], fuzzy set [151] and information theory [152].

The goal of feature selection using rough set is to find the smallest
feature subset, which still preserves the classification quality as the
original feature set. Therefore, Wang et al. [147] proposed a PSO-
based filter feature selection approach, in which the fitness function
of a feature subset was the combination of the classification quality
of the feature subset calculated by rough set theory and the propor-
tion of the selected features. The experimental results showed that
the proposed algorithm could find the optimal solution in a smaller
amount of time than a GA using rough sets. Cervante et al. [148] pro-
posed a new fitness function, which used probabilistic rough set the-
ory to minimize the number of equivalence class and maximize the
number of instances in each equivalence class. The reported results
illustrated that the new fitness function could guide PSO to search
for a small subset, which had better classification performance than

2.7. EC-BASED FEATURE SELECTION 61

the subsets evolved by two other PSO-based feature selection ap-
proaches using rough set.

Chakrabortly [151] proposed a filter PSO-based feature selection ap-
proach, which used fuzzy set to calculate the fitness value for each
particle. Specifically, the membership value of fuzzy set theory was
used with more than one threshold to decide whether or not an in-
stance is consistent according to the selected features. The propor-
tion of consistent instances over the total number of instances was
the fitness measure of the current feature subset.

Besides rough set and fuzzy set theories, information theory has
been also widely combined with PSO to solve feature selection prob-
lems. Based on the idea of “Max-relevance and min-redundancy”
[120], mutual information was used to form fitness functions, which
aimed to find a feature subset with a minimal redundancy within the
subset and a maximal relevance between the subset and the class la-
bel. In [152], Cervanter et al. proposed two new information-based
fitness functions. In the first fitness function, mutual information
between two single selected features and between a selected fea-
ture and the class label (paired evaluation) were used to respectively
compute the relevance and redundancy of the feature subset. These
measures were also combined in the second fitness measure. How-
ever, in the second measure, instead of using mutual information,
information gain (group evaluation) was used to calculate the rel-
evance and redundancy of the feature subset. The results showed
that both of fitness function successfully guided PSO to search for
small feature subsets, which achieved better classification accuracy
than using all features. The subset evolved by the first fitness func-
tion was smaller than the one evolved by the second fitness function.
However, the second algorithm achieved better classification perfor-
mance.

62 CHAPTER 2. LITERATURE REVIEW

Recently, filter and wrapper approaches have been combined to form
hybrid approaches, which take the advantages of both filter and wrap-
per methods. Nguyen et al. [153] proposed a wrapper PSO-based
feature selection approach, in which gbest was improved by a lo-
cal search using a filter measure. The local search mimicked the
typical backward feature selection method to remove features from
gbest according to the relevant and redundant measure calculated by
mutual information. The experimental results showed that the pro-
posed algorithms selected much smaller number of features while
still achieved similar or better classification performance than the
other PSO-based algorithms. Although the proposed algorithm had
to perform an extra task for local search, its computational cost is
still cheaper than other PSO-based algorithms because of the smaller
number of selected features. In [154], a two phase PSO-based fea-
ture selection algorithm was proposed to deal with gene datasets.
In these datasets, each gene is considered a single feature. In the
first phase, a small number of genes were selected based on a cor-
relation measure which maximized the gene-class correlation (rele-
vance) and minimized the gene-gene correlation (redundancy). The
second phase was a wrapper PSO-based feature selection using NB
to evaluate feature subsets. The experimental results showed that
the proposed algorithm outperformed the standard BPSO algorithm
and another hybrid model proposed by [155].

Overall, it can be seen that PSO has been successfully applied to fea-
ture selection. However, as a population-based optimization approach,
efficiency is a limitation of PSO-based feature selection. In addition, al-
though both continuous and binary PSO have been applied to feature
selection, there is more work applying continuous PSO. Xue et al. [156]
conducted a comparison between binary and continuous PSO for feature
selection, which indicated that generally continuous PSO achieved better
performance than binary PSO although binary PSO had more natural rep-

2.7. EC-BASED FEATURE SELECTION 63

resentation to feature selection.

Other EC techniques for feature selection

Besides PSO, other EC techniques such as GA, GP, DE have also been
widely applied for feature selection problems. The rest of this section re-
views some recent feature selection approaches using these EC techniques.

• GAs-based feature selection GAs could be considered the first EC
technique being applied to feature selection. In GAs-based feature
selection approaches, each chromosome is represented by a bit string,
where each bit corresponds to one original feature. Each bit takes
a value of “1” or “0”, which respectively illustrates that the corre-
sponding feature is “selected” or “not selected”.

One limitation of traditional GAs is the decrement of diversity due to
simple genetic operators. Therefore, when the search space is huge,
GAs usually converge quickly to local optima. In order to avoid this
problem, Li et al. [157] proposed a multi populations based-feature
selection algorithm where the neighboring populations exchanged
their information/experience by sharing two individuals. In addi-
tion, a local search technique was applied to improve the best in-
dividual in each population. The experimental results showed that
the proposed algorithm achieved better performance than four other
GA-based feature selection approaches. However, the algorithm was
tested only on datasets with less than 60 features. On the other hand,
Derrac et al. [158] used multi populations GA to simultaneously per-
form feature selection and instance selection. In particular, the first
population was purely used for feature selection, the second popula-
tion concentrated on instance selection and the third population fo-
cused on both feature selection and instance selection. So in the pro-
posed algorithm, two tasks were done simultaneously, which was
very effective, especially for datasets which had a large number of

64 CHAPTER 2. LITERATURE REVIEW

features as well as noisy instances.

In [159], Oreski et al. proposed a hybrid genetic algorithm with
neural-networks (HGA-NN) to evolve an optimal feature subset. In
the initialization step, the feature set was narrowed by different fast
filter techniques. So important features, which were selected by the
filter approaches, were used to initialize the major part of the pop-
ulation. The rest of population was filled randomly. In HGA-NN,
an incremental stage was applied to enhance the creation of the ini-
tial population, which increased the diversity of the genetic mate-
rial. The proposed algorithm was evaluated on two real-world credit
datasets. The experimental results showed that HGA-NN achieved
better classification performance than GA-NN technique [160].

Lin et al. [161] proposed a novel GA-based feature selection ap-
proach, in which the prior knowledge about financial distress pre-
diction was used to group similar features. After that, a filter ap-
proach was used to rank all features in the same group and only
top-rank features from each group were chosen to participate in the
selection process by GAs algorithm. Although the two-step selection
approach was efficient, it skipped the interaction between features.
Recently, GAs were also proposed to select features in hierarchical
feature spaces [162]. Two new mutation operators were proposed to
deal with redundant features in a hierarchical space. The experimen-
tal results showed the GAs-based algorithm achieved better perfor-
mance than two state-of-the-art hierarchical feature selection algo-
rithms. Other GA-based feature selection approaches were devel-
oped recently to solve real-world problems, such as [163, 164, 165,
166, 167].

GAs were also widely applied to achieve multi-objective feature se-
lection. Most of them applied NSGA-II [168, 169, 170] and recently
NSGA-III [171].

2.7. EC-BASED FEATURE SELECTION 65

Overall, as the first evolutionary algorithm, GAs have been success-
fully applied to feature selection for almost 30 years [10]. However,
when GAs are applied to feature selection, its two genetic operators
i.e. crossover and mutation need to be designed carefully, otherwise,
they can break blocks of complementary features.

• GP-based feature selection In GP-based feature selection, each in-
dividual is represented as a tree. All leaf nodes in each tree are the
original features, which are considered selected features.

A new GP-based hyper-heuristic feature selection approach was pro-
posed by Hunt [172]. The main idea was to evolve new heuris-
tics based on two basic heuristics, which are Greedy Left (SBS) and
Greedy Right (SFS). In which, each individual was a newly heuris-
tic rule, which could be applied on an initial subset to evolve a final
subset. In particular, GL operation removed a feature from a sub-
set while GR will add a feature to a subset. The quality of the final
subset was used as a fitness value of that GP individual. The experi-
mental results on 3 datasets showed that the evolved heuristics were
able to produce small feature sets while still improving the classi-
fication performance. However, the initial feature subset was very
important, which could affect on the whole search process.

Bhowan [173] proposed two GP-based approaches to evolve a set
of features, which was used directly in the Watson system, an intel-
ligent open-domain question answering system. The first approach
extracted all features, which were used in the best-of-run evolved GP
tree. The second approach considered all evolved trees. Particularly,
from the set of GP trees, the top N features with the most frequency
were chosen as extracting features. Two values of N used in this pa-
per were 10 and 20. The experimental results showed that the set
of features selecting from the best GP tree only worked well when
the number of selected features was small. Meanwhile, selecting top

66 CHAPTER 2. LITERATURE REVIEW

N features from the whole set of trees produced good resulted on
both small and large feature set. However, as other ranking features
selections, this algorithm did not consider the interactions between
features, especially between redundant features.

Most GP-based feature selection algorithms implicitly perform fea-
ture selection by selecting features used in the final trees [174, 175].
Recently, Viegas et al. [176] proposed a GP-based feature selection
algorithm which could explicitly perform feature selection. In the
proposed algorithm, each inner node of GP was a set operator, and
each leaf node was an original feature. Therefore, the output of each
tree was a set of features rather than a formula as standard GP. The
experimental results showed that the proposed algorithm could re-
duce up to 98% number of features on biological datasets without
reducing the classification performance.

Overall, GP is also successfully applied to feature selection. With
a flexible representation, GP can perform feature selection implic-
itly or explicitly. However, the flexible representation makes GP-
based feature selection has much larger search space (possibly in-
finite without a tree depth limit) compared with PSO or GAs-based
feature selection. The main reason is a feature subset can be rep-
resented by many different GP trees. In general, GP is still more
suitable for feature construction [10].

• DE-based feature selection

DE recently has been applied to solve feature selection problem since
2008. Most of the works focused on improving the searching mech-
anism and representation. Khushaba et al. [177] proposed a hybrid
feature selection approach, in which DE operators were applied to
improve the feature subsets found by ACO. Experimental results
show that the proposed algorithms performed better than other tra-
ditional feature selection approaches. Later, [178] proposed a new

2.7. EC-BASED FEATURE SELECTION 67

encoding scheme, in which each individual as a vector of floating
numbers and the vector’s length was predefined. Xue et al. [179]
proposed a multi-objective DE-based feature selection approach, in
which non-dominated sorting concept was applied to control the
population. The experimental results showed that the proposed multi-
objective feature selection approach evolved smaller feature sets and
achieved better classification performance than single-objective ap-
proach. DE was also applied to achieve filter-based feature selec-
tion in [180]. In the proposed algorithm, two filter criteria, ReliefF
and FisherScore, were combined as the ranking measure. Normal-
ized mutual information was used as the relevance measure. The
two measures were then either combined to form a single-objective
DE-based algorithm or considered as two conflicting objectives to
form a multi-objective DE-based algorithm. The experimental re-
sults showed that both DE-based algorithms evolved small feature
subsets with better classification accuracies than using all features.
The proposed fitness function also helps DE to evolve better feature
subsets than the traditional filter criteria.

In general, DE can be successfully applied to feature selection. How-
ever, in comparison with PSO-based feature selection, the number
of DE-based feature selection algorithms is still small. The possible
reason is that DE faces some difficulties when it was applied to high
dimensional problems [181].

2.7.2 Multi-objective Feature Selection

EC has been widely applied to multi-objective feature selection. Mukhopad-
hay et al. [168] proposed a multi-objective approach to feature selection,
in which NSGA-II was used along with the SVM classification algorithm
to identify miRNA markers. The representation encoded both the fea-
ture subset and the SVM’s parameters. The experimental results on real-

68 CHAPTER 2. LITERATURE REVIEW

world miRNA datasets showed that the proposed algorithm outperforms
five deterministic feature selection methods. In addition, many identified
miRNA markers were found to be related to different kinds of cancers. Le-
andro et al. [182] applied a multi-objective GA (MOGA) to achieve feature
selection for face recognition. In this method, there were three objectives,
which were the aggregation of the classification accuracy and the feature
subset size, the number of selected coefficients, and the mutual informa-
tion between selected features. The experimental results showed that the
multi-objective approach achieved better classification performance than
other state-of-the-art approaches. In addition, the solutions found by MOGA
selected fewer features and still achieved similar accuracies to that of single-
objective GA. Some other NSGA-II-based feature selection algorithms were
also proposed [183, 184, 185]. Among EC techniques, GAs-based multi-
objective algorithms were the most popular but those works simply ap-
plied GAs without considering the characteristic of feature selection such
as the partially conflicting objectives or the two objectives are not equally
important [10].

Multi-objective PSO was also widely applied to feature selection. Xue
et al. [186] proposed the first multi-objective PSO (MOPSO) algorithm for
feature selection. The target was to minimize both the classification er-
ror and the number of selected features using either continuous or binary
PSO. The experimental results showed that MOPSO is superior to NSGA-
II, SPEA2, and PAES2 on feature selection problems. A filter MOPSO-
based feature selection was also proposed by Xue et al. [187], in which
the two objectives were to minimize the number of features and to maxi-
mize the relevance between the selected features and the class labels. The
relevance was calculated by using either mutual information or informa-
tion gain. The experimental results suggested that MOPSO algorithms
evolve feature subsets with higher classification performance than single-
objective feature selection algorithms. Later, Nguyen et al. [188] improved
the archive’s solutions in MOPSO by applying three local search operators,

2.8. FEATURE-BASED TRANSFER LEARNING 69

which are Inserting, Removing and Swapping. The proposed algorithm
could select a smaller number of features and achieved similar or bet-
ter classification performance than NSGA-II, SPEA2, PAES, and CMDP-
SOFS [186] on 12 datasets. Recently, a multi-objective Differential Evolu-
tion (DE)-based feature selection algorithm was developed by Xue et al.
[189]. During the evolutionary process, if the population size exceeded
its maximum limit, solutions with lower dominance levels were removed.
The algorithm selected better feature subsets than sequential search algo-
rithms and two single-objective DE-based feature selection algorithms.

Most current multi-objective feature selection algorithms use Pareto
dominance-based algorithms, which usually focus on the center of the
Pareto front. This problem can be addressed by the MOEA/D framework.
To the best of our knowledge, Paul et al. [190] proposed the first filter
MOEA/D-based feature selection algorithm, which considered inter-class
and intra-class distance measures as two conflicting objectives. A fuzzy
rule was developed to extract a single solution from the final Pareto front.
The experimental results showed that the proposed algorithm can evolve
better feature subsets than sequential search and NSGA-II-based feature
selection algorithms. However, the Pareto fronts evolved by MOEA/D
and NSGA-II are not compared using any performance indicator. In addi-
tion, MOEA/D was applied directly to feature selection without consider-
ing the highly discontinuous Pareto front of feature selection.

2.8 Feature-based Transfer Learning

Most feature-based transfer learning approaches aim to build a latent fea-
ture space as a bridge between different domains. The projected datasets
of two original datasets on the new feature space are expected to be closer
than the original datasets.

In [191], a dimensionality reduction method, which used Maximum
Mean Discrepancy [192] to measure the similarity between two distribu-

70 CHAPTER 2. LITERATURE REVIEW

tions, was proposed to learn a new low-dimensional feature space. The
new source dataset was then used to train a classifier which could be
applied to classify the target instances. The work was further extended
in [61] to address cases where information about the class label is avail-
able in the target domain. The two proposed algorithms, called TCA and
STCA, were examined on two real-world applications, indoor WiFi local-
ization, and cross-domain text classification. The results showed that both
algorithms reduced the differences between source and target domains to
achieve better target performance than using the original feature set. Shi
and Sha [193] measured domain differences using mutual information be-
tween instances and their binary domain labels. The assumption was that
the classes in two domains were well separated and instances across do-
mains had to be close to each other if they belonged to the same class.
Shi and Sha showed that by considering discriminative characteristics on
both source and target domains, the classification performance was signif-
icantly improved over TCA/STCA [61]. However, the latent feature space
was assumed to be a linear transformation of the original feature space.
Yan et al. [62] proposed two algorithms, named MIDA and SMIDA, which
could cope with continuous distributional changes in the feature space.
The latent feature space is built to have a maximized independence with
domain features. Some works projected both source and target data into
two different feature spaces and then built connections between the newly
built spaces [194]. Although building a latent feature space might result in
good performance, it lost meaning and possible important information of
the original features.

An early work on feature selection for domain adaptation was per-
formed by Uguroglu and Carbonel [59]. The task was to select original
features that were not much different between two domains, which were
called domain-invariant features. Invariant and variant features could be
distinguished based on their performance in minimizing domains’ gap. It
was shown that the proposed algorithm achieved better performance than

2.9. SUMMARY 71

TCA [61] on the digital recognition and Wifi localization problems. The ef-
ficiency of the work was improved by Tahmoresnezhad and Hashemi [60].
Particularly, the input dataset was split into k smaller sub-datasets. The
proposed algorithm was run on all different sub-datasets, so each feature
had k different weights. The average weight determined whether a feature
was selected. However, in these works, a threshold value had to be prede-
fined to select features. The features were selected individually based on
their weights, which meant that feature interactions were ignored. In ad-
dition, discriminative abilities on both source and target domains were not
considered together, so some selected domain-invariant features might be
irrelevant to the class label.

2.9 Summary

This chapter introduced essential concepts of machine learning, classifica-
tion, transfer learning, feature selection, evolutionary computation tech-
niques, particularly PSO and MOEA/D, and mutual information. This
chapter also reviews both EC and non-EC based approaches for feature
selection.

It has been shown that EC is successfully applied to achieve feature
selection. However, this chapter also highlights the limitations of existing
EC-based feature selection algorithms on different aspects such as fitness
function (filter/wrapper), searching mechanism, and the number of objec-
tives. The limitations of existing work and the motivations of this research
can be summarized as follows.

• Mutual information estimation for feature selection

Mutual information can be used to measure redundancy and rele-
vance between features. It can be calculated by using the counting
approach or the estimation approach. Although both approaches
have been applied to feature selection, there is no existing work ex-

72 CHAPTER 2. LITERATURE REVIEW

plicitly comparing the two approaches. Therefore, it is needed to ex-
amine the ability to detect feature interactions of the two approaches,
especially when they are used with EC techniques.

• BPSO-based feature selection

Feature selection is a combinatorial optimization problem and it has
a binary search space. BPSO has been applied to feature selection
but its performance is limited in comparison with continuous PSO.
Many studies attempted to improve the performance of BPSO by
modifying parts of BPSO. However, there is no existing work inves-
tigating the inappropriate velocity and momentum concepts in stan-
dard BPSO. These two core concepts need to be redefined to make
BPSO cope with the characteristics of binary search spaces.

• Efficient wrapper-based feature selection

Wrapper-based feature selection usually achieves good classification
performance but its computational cost is expensive. Some studies
aim to improve its efficiency by shortening the representation. How-
ever, the main reason, which is its expensive evaluation process, has
not been paid enough attention.

• Wrapper MOEA/D-based feature selection

Most of the existing multi-objective feature selection algorithms use
Pareto dominance-based algorithms, which usually result in a small
set of non-dominated feature subsets. MOEA/D, a decomposition-
based algorithm, usually evolves a more diverse non-dominated set
than the Pareto dominance-based algorithm. However, there is no
existing work investigating the use of MOEA/D for wrapper-based
feature selection.

• Feature selection-based transfer learning

2.9. SUMMARY 73

Feature-based transfer learning is one of the most common approaches
to achieve transfer learning. However, most existing feature-based
methods have to assume models to measure differences between
data distributions. In addition, the existing methods do not take into
account the interactions between features. Although EC techniques
can address the two limitations, there is no work applying EC to se-
lect features for transfer learning.

Each of the following five chapters focuses on addressing each of the
above limitations.

74 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Mutual Information for Feature
Selection

3.1 Introduction

Among filter measures for feature selection, mutual information gains at-
tention because it can detect non-linear correlations between features eas-
ier than other measures [26, 27]. However, most existing mutual infor-
mation based feature selection algorithms count the number of instances
in a dataset to derive probability distributions. This counting approach
can result in inaccurate mutual information when there are not enough in-
stances. In addition, the counting approach is applicable only to discrete
datasets. To overcome these limitations, several estimation methods have
been proposed to estimate mutual information [195]. Although mutual
information estimation has been used to achieve feature selection [122],
there is no work that explicitly compares the effect of counting and es-
timation approaches on feature selection, especially when they are used
with an Evolutionary Computation algorithm.

75

76 CHAPTER 3. MUTUAL INFORMATION FOR FS

3.1.1 Chapter Goal

The overall goal of this chapter is to develop a PSO-based feature selection
algorithm with a fitness function based on mutual information estimation
to select informative features from the original feature set. The proposed
algorithm is expected to reduce the number of features while at least main-
taining or improving the classification performance in comparison with
using all features. Specifically, we will investigate:

• whether mutual information estimation for feature selection can work
well on both discrete and continuous datasets,

• whether mutual information estimation can achieve better perfor-
mance than the counting approach in terms of the classification per-
formance, and

• whether mutual information estimation can capture the interactions
between features better than the counting approach.

Note, the mutual information estimation approaches require that the fea-
ture values have a well defined distance metric (more details can be seen
in Section 2.5.2 of Chapter 2). All the datasets considered in this chapter,
therefore, have numeric features only.

3.2 Proposed Algorithm

In a feature selection algorithm, there are usually two main parts includ-
ing a searching mechanism and a fitness function, which are responsible
for generating feature subset candidates and evaluating the generated sub-
sets, respectively. In this chapter, PSO is used as the searching mechanism.
This section firstly describes the PSO’s representation when it is applied
to feature selection. Secondly, it shows how to form a fitness function us-
ing mutual information estimation, which is the main contribution of this
chapter. Finally, it presents the overall algorithm.

3.2. PROPOSED ALGORITHM 77

3.2.1 Representation

As discussed in Chapter 2, PSO has a vector-based representation, which
can be naturally applied to feature selection. Each particle’s position is a
vector of real numbers whose length is equal to n, the total number of orig-
inal features. Each position entry in the position vector corresponds to an
original feature. The entry value, which is in the range [0, 1], is used to de-
termine whether the corresponding feature is selected or not. Particularly,
the decision is based on a threshold θ value: if the entry value is greater
than θ, the corresponding feature is selected; otherwise the feature is dis-
carded. Therefore, each particle’s position represents a candidate feature
subset. The following subsection describes how to evaluate the goodness
of the candidate feature subsets.

3.2.2 Proposed Fitness Function

The fitness function is used to evaluate feature subsets represented by par-
ticles, so it plays a vital role in guiding PSO to search for an optimal feature
subset. In this chapter, we use mutual information to form the fitness func-
tion. Most mutual information-based feature selection approaches utilize
mutual information to measure the relevance and redundancy of a feature
subset, using two formulas, Eq. (3.1) and Eq. (3.2):

Relevance(S) = MI(S,C) (3.1)

Redundancy(S) = MvI(f1, f2, . . . , fm) (3.2)

where C is the class label, S is a feature subset, which contains m features
f1, . . . , fm. Note that MvI is multi-variate mutual information, which is
an extension of mutual information to measure the mutual information
between a set of features. More details about multi-variate mutual infor-
mation were given in Section 2.5.1 of Chapter 2.

78 CHAPTER 3. MUTUAL INFORMATION FOR FS

The aim of feature selection is to produce an optimal feature subset by
removing irrelevant and redundant features. The optimal feature subset
minimizes the quality measure given in Eq. (3.3).

Fitness(S) = −α×Relevance(S) + (1− α)×Redundancy(S) (3.3)

where α is used to control the contributions of relevance and redundancy
to the fitness measure. In feature selection, the goal of increasing the clas-
sification performance has a higher priority than reducing the number of
features, a larger weight is usually assigned to Relevance. Therefore, α is
usually in the range [0.5, 1], which makes (1− α) fall in the range [0, 0.5].

Note that in Eq.s (3.1) and (3.2), multi-variate information is used to
measure the relevance of a feature subset or the redundancy between a set
of features. However, computing it is not an easy task. Suppose that each
feature fi ∈ S has vi possible values, then the total number of possible

values of the feature set S is
m∏
i=1

vi. Therefore, accurately calculating the

mutual information of a feature set usually requires many instances of
each possible value, which is a huge number of instances in the training
set. This is seldom satisfied in real-world datasets. For instance, gene
expression datasets can have up to thousands of features but a very small
number of samples. To cope with the lack of samples, the relevance and
redundancy measures are estimated by decomposing them into pair-wise
mutual information, which can be seen in Eq. (3.4) and Eq. (3.5).

Relevancepw(S) =
m∑
i=1

MI(fi, C) (3.4)

Redundancypw(S) =
m−1∑
i=1

m∑
j=i+1

MI(fi, fj) (3.5)

Based on the two pair-wise terms, the fitness function used in this chapter
is defined by Eq. (3.6).

Fitnesspw(S) = −α×Relevancepw(S) + (1− α)×Redundancypw(S) (3.6)

3.2. PROPOSED ALGORITHM 79

In order to calculate the pair-wise mutual information between two
features, it is necessary to know the probability distribution of each feature
including the class label. In most current approaches, the probability dis-
tribution is estimated by counting the number of instances in the training
set with each possible feature value; and constructing a discrete probabil-
ity distribution. Although this approach is efficient for discrete datasets, it
is difficult to apply to continuous datasets since each continuous variable
has an infinite number of possible values. In order to be applied to contin-
uous datasets, counting approaches require some ways of discretizing the
datasets.

Another approach is to apply mutual information estimation which
does not require discretization of continuous datasets. There are many
mutual information estimation methods (discussed in section 2.5.2 of Chap-
ter 2), among them kernel density estimation (KDE) [114] and nearest
neighbor estimation (NNE) [115] give the most promising results. In KDE,
a kernel is used to measure the distance between two instances given a
feature subset S. The probability of an instance is estimated based on the
number of instances whose distances to the current instance are less than
a predefined boundary, called r. NNE uses the K nearest neighbors of an
instance to derive the boundary r, so NNE can be seen as an improvement
of KDE. However, NNE critically depends on the search for nearest neigh-
bors. It is known that the nearest neighbor search faces difficulties when
the number of features or dimensions increases due to the “curse of dimen-
sionality” [196]. In addition, the search for nearest neighbors also makes
NNE more computationally intensive than KDE. Therefore, in this chap-
ter KDE is chosen as a representative of estimation approaches to compare
with the counting approach.

The two PSO-based feature selection algorithms, which use KDE and
the counting approach in their fitness functions, are called PSO-KDE and
PSO-C, respectively.

80 CHAPTER 3. MUTUAL INFORMATION FOR FS

Figure 3.1: Overall feature selection system.

3.2.3 Overall Algorithm

The overall algorithm can be seen in Figure 3.1, where the training set is
used in the evaluation process. The best evolved feature subset is then
tested on the test set. The obtained testing classification performance is
used as the main criterion to compare between different feature selection
algorithms. In this chapter, mutual information is used to form the fitness
function and the aim is to investigate the effect of two different ways to
calculate mutual information, which are the counting and estimation ap-
proaches. The main contribution of this chapter is in the evaluation step,
which is marked in green in the figure.

The pseudo-code of the proposed PSO-based feature selection algo-
rithm is shown in Algorithm 1.

3.3 Experiment Design

3.3.1 Datasets

KDE and the counting approach are compared on both artificial and real-
world datasets. The real-world datasets are shown in Table 1.1. The ar-

3.3. EXPERIMENT DESIGN 81

Algorithm 1 : Pseudo-code of the proposed algorithm

1: randomly initialize the position and velocity of each particle;
2: while Maximum iteration is not reached do
3: for i = 1 to PopulationSize do
4: evaluate the fitness of particle i using Eq. (3.6);
5: update the pbest of particle i;
6: end for
7: update gbest for each particle;
8: for i = 1 to PopulationSize do
9: update velocity of particle i using Eq. (2.1);

10: update position of particle i using Eq. (2.2);
11: end for
12: end while
13: output the feature subset selected by gbest;

tificial datasets can be seen in Table 3.1, where “Con” and “Dis” mean
respectively continuous and discrete datasets, #Fs means the total number
of features, #Cs means the total number of class values and #Is is the total
number of available instances.

There are 7 different artificial datasets, which have different relation-
ships between features and between features and the class labels. The first
two artificial datasets have three binary features. In Binary 1, an instance
belongs to class 1 if exactly two features have value 1, otherwise, the in-

Table 3.1: Artificial datasets

Dataset Type #Fs #Cs #Is

Binary 1 Dis 3 2 8
Binary 2 Dis 3 2 8
Monk 1 Dis 6 2 432
Monk 2 Dis 6 2 432
Monk 3 Dis 6 2 432

2-way linear Con 4 2 200
3-way linear Con 4 2 200

82 CHAPTER 3. MUTUAL INFORMATION FOR FS

stance is in class 0. In Binary 2, if all features of an instance have the same
values then the instance is in class 1, otherwise, it belongs to class 0. In
these two datasets, there is no redundancy and all three features are rele-
vant to the class label. Feature selection on these datasets should select all
three features.

Three other artificial datasets are the Monk datasets [32], which have
6 discrete features and one binary class label. The 3rd and 6th features
are binary variables, which can be either 1 or 2. The 5th feature has four
possible values from 1 to 4. The other features have three values, which
range from 1 to 3. In Monk 1 dataset, the class label is 1 if either f0 = f1

or f4 = 1, so the optimal feature set of Monk 1 is {f0, f1, f4}. Meanwhile,
in Monk 2, the class label is 1 if there are exactly two features taking value
1. In this case, all features are important in the Monk 2 dataset. The last
Monk dataset is a bit more complicated, where the class label is 1 if (f3 = 1

and f4 = 3) or (f4 6= 4 and f1 6= 3). In the Monk 3 dataset, the most
important feature subset is {f1, f3, f4}. Notice that there is no redundancy
in the Monk datasets.

2-way linear and 3-way linear have 4 continuous features. In 2-way lin-
ear, the last two features are copies of the first two features (f0 = f2, f1 =

f3). The class label is set to 1 if the average of the first two features is
greater than 0.5. Therefore, the optimal feature subset for this dataset is
one of the four feature subsets, {f0, f1}, {f0, f3},{f1, f2} or {f2, f3}. In 3-
way linear, the first two features are two random variables, which fall in

[0,1]. The 3rd feature is the average of the first two features, f2 =
f0 + f1

2
.

The 4th feature (f3) is just a copy of the first feature. Therefore in this
dataset, there is redundancy in any feature subsets that contains f0 along
with f3 or (f1 and f2). The class label is determined by feature f2. Particu-
larly, the class label is set to 1 if f2 > 0.5, so the optimal feature subset for
this dataset is {f2}.

3.3. EXPERIMENT DESIGN 83

3.3.2 Parameter Settings

In this chapter, 10-fold cross-validation is used to conduct the experiments.
Particularly, each dataset is divided into 10 folds. Each fold will be selected
as a test set and the other folds are used as a training set to select features.
For each method, this process is run 30 independent times on each dataset;
so there will be 300 evolved feature subsets. Since each dataset has contin-
uous and discrete versions, the selected feature subsets are tested on both
versions using three classification algorithms K-nearest neighbor (KNN),
Decision Tree (DT) and Naive Bayes (NB), which are representatives of
instance-based, tree-based and probabilistic classification algorithms, re-
spectively. For the KNN classification algorithm, K is set to 5 so that the
classification algorithm is able to avoid noise instances with a good effi-
ciency. REP (Reduced-Error Pruning) tree is picked as a representative of
the DT classification algorithm. The setting of REP tree follows the default
settings in Weka [197].

The kernel width r needs to satisfy the condition Kr ≤ N/(3/r)nr ,
where Kr is the number of neighbors fall in the range r, nr is the num-
ber of features and N is the total number of instances. In this case, since
only pair-wise mutual information is used, the number of dimensions nr
is 2. Lungarella et al. [198] proposed that Kr should be at least equal to
3 to avoid undersampling effects. Therefore, in this chapter Kr is set to 3.

From the above conditions, the kernel width r is specified by
3

log2N/3
.

The weight α in the pair-wise fitness measure Eq. (3.3) has three dif-
ferent values: 0.6, 0.8 and 1.0 to evaluate the effect of different relevance
and redundancy’s contributions. The three values are evenly selected in
the range [0.5, 1], which gives higher priority to the relevance term.

For PSO algorithm, the fully connected topology is used. The parame-
ters are set as follows [199]: w = 0.7298, c1 = c2 = 1.49618, vmax = 2.0. The
population size is 30 and the maximum number of iterations is 100. The
threshold θ is set as 0.6.

84 CHAPTER 3. MUTUAL INFORMATION FOR FS

The results of counting and estimation approaches are compared by
both the Wilcoxon and ANOVA tests with a confidence interval of 95%.

3.4 Results and Discussion

Experimental results on real-world and artificial datasets are shown in Ta-
bles 3.2 and 3.3, respectively. Each table shows the results of PSO-KDE
and PSO-C on a dataset. The prefix “Con-” and “Dis-” correspond to
the results on the continuous and discrete versions of each dataset. The
Wilcoxon significant test between KDE and counting approach is shown
in the brackets, besides KDE’s accuracies. The confidence interval of the
Wilcoxon test is set to 0.95. “+”, “=” or “-” mean that PSO-KDE approach
is respectively significantly better, similar or significantly worse than PSO-
C. Table 3.4 shows which features are selected by the PSO-based feature
selection algorithms on artificial datasets.

3.4.1 Real-world Datasets

The results on the 12 real-world datasets are shown in Table 3.2. Given
a specific α value, the best testing accuracy on each dataset is marked in
bold.

PSO-KDE vs PSO-C on real-world datasets

In terms of the classification accuracy, PSO-KDE is significantly better than
PSO-C on the continuous version of most of datasets. For example, on the
Wine dataset, the classification accuracy of PSO-KDE is about 10% better
than PSO-C on both DT and NB. On Ionosphere and Sonar, the feature
subsets generated by PSO-KDE achieve up to 10% better than PSO-C re-
gardless of the similar number of selected features. On WBCD, PSO-KDE
is significantly better on all the three classification algorithms when α is
set to 0.6 and 0.8. In summary, on the continuous version of datasets,

3.4. RESULTS AND DISCUSSION 85

Table 3.2: Testing accuracies on real-world datasets.

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 13 94.38 80.94 86.86 13 93.25 97.76 97.78

0.6
PSO-C 1.0 82.52 80.48 67.72 2.24 92.58 93.06 92.7

PSO-KDE 2.56 92.84(+) 81.69(=) 75.71(+) 2.24 92.42(=) 93.01(=) 92.63(=)

0.8
PSO-C 1.0 83.12 81.17 67.9 4.98 93.72 96.91 96.3

PSO-KDE 4.98 95.61(+) 80.98(=) 81.15(+) 4.98 93.74(=) 96.79(=) 96.31(=)

1.0
PSO-C 11.92 94.48 80.81 85.84 11.99 93.45 97.08 97.39

PSO-KDE 11.95 94.51(=) 80.76(=) 86.04(=) 12.01 93.46(=) 97.06(=) 97.33(=)

(a) Wine

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 14 84.64 68.99 85.22 14 85.51 85.22 85.22

0.6
PSO-C 3.03 85.04 83.97 85.56 3.03 85.07 84.92 85.55

PSO-KDE 2.62 85.06(=) 80.5(-) 85.36(-) 2.62 85.36(+) 84.39(=) 85.33(-)

0.8
PSO-C 5.27 85.24 80.33 84.56 5.27 85.22 84.99 85.34

PSO-KDE 4.49 84.04(-) 74.5(-) 84.85(=) 4.49 85.26(=) 84.7(=) 85.39(=)

1.0
PSO-C 12.33 84.68 69.07 85.08 12.33 85.46 85.3 85.39

PSO-KDE 12.58 84.68(=) 69.28(=) 85.01(=) 12.58 85.49(=) 85.38(=) 85.39(=)

(b) Australian

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 18 85.93 83.04 81.32 18 85.93 83.04 81.32

0.6
PSO-C 1.02 75.8 75.01 71.12 1.02 75.8 75.01 71.12

PSO-KDE 1.97 75.17(-) 74.41(=) 74.39(+) 1.97 75.17(-) 74.41(=) 74.39(+)

0.8
PSO-C 1.18 76.96 76.07 71.73 1.18 76.96 76.07 71.73

PSO-KDE 3.83 81.43(+) 80.1(+) 78.69(+) 3.83 81.43(+) 80.1(+) 78.69(+)

1.0
PSO-C 15.96 85.49 82.47 81.18 15.96 85.49 82.47 81.18

PSO-KDE 16.25 85.43(=) 82.46(=) 81.33(=) 16.25 85.43(=) 82.46(=) 81.33(=)

(c) Vehicle

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 24 74.2 68.2 73.5 24 74.2 68.2 73.5

0.6
PSO-C 3.2 70.11 67.53 70.66 3.2 70.11 67.53 70.66

PSO-KDE 3.02 70.88(+) 68.36(=) 71.33(+) 3.02 70.88(+) 68.36(=) 71.33(+)

0.8
PSO-C 4.97 71.81 70.09 72.39 4.97 71.81 70.09 72.39

PSO-KDE 5.03 72.4(+) 71.0(+) 72.97(+) 5.03 72.4(+) 71.0(+) 72.97(+)

1.0
PSO-C 19.76 73.95 68.69 73.18 19.76 73.95 68.69 73.18

PSO-KDE 19.98 74.21(=) 68.95(=) 73.58(=) 19.98 74.21(=) 68.95(=) 73.58(=)

(d) German

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 30 94.73 93.32 88.57 30 91.91 96.49 94.38

0.6
PSO-C 1.37 88.21 87.32 75.93 2.07 92.09 91.74 92.73

PSO-KDE 2.14 91.81(+) 90.31(+) 84.76(+) 2.07 92.07(=) 91.75(=) 92.73(=)

0.8
PSO-C 1.9 90.25 89.93 80.72 4.21 93.0 94.39 94.87

PSO-KDE 3.79 93.49(+) 90.9(+) 89.26(+) 4.2 93.02(=) 94.41(=) 94.85(=)

1.0
PSO-C 24.96 94.14 92.94 88.49 25.01 92.31 96.06 94.19

PSO-KDE 24.83 94.21(=) 93.04(=) 88.79(=) 25.0 92.35(=) 96.07(=) 94.18(=)

(e) WBCD

86 CHAPTER 3. MUTUAL INFORMATION FOR FS

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 34 89.17 84.33 35.9 34 90.87 85.19 90.58

0.6
PSO-C 2.4 81.52 79.7 81.17 2.31 84.89 84.49 84.65

PSO-KDE 2.37 84.1(+) 84.71(+) 83.3(+) 2.25 84.75(=) 84.42(=) 84.54(=)

0.8
PSO-C 2.65 80.01 78.01 81.68 4.03 88.93 89.11 89.22

PSO-KDE 4.08 87.75(+) 88.12(+) 80.86(=) 4.0 88.89(=) 89.17(=) 89.24(=)

1.0
PSO-C 27.87 88.53 83.73 35.9 27.55 90.59 84.89 90.55

PSO-KDE 27.75 89.03(=) 84.14(+) 35.9(=) 27.59 90.65(=) 84.89(=) 90.56(=)

(f) Ionosphere

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 60 74.0 80.17 50.38 60 72.57 85.07 75.98

0.6
PSO-C 1.57 57.48 56.88 51.86 2.11 63.87 62.06 64.29

PSO-KDE 2.18 61.7(+) 62.03(+) 52.32(=) 2.13 63.41(=) 61.64(=) 63.83(=)

0.8
PSO-C 1.58 57.27 57.87 52.09 2.69 68.3 67.11 68.38

PSO-KDE 2.67 67.21(+) 67.05(+) 50.64(=) 2.69 68.46(=) 67.05(=) 68.58(=)

1.0
PSO-C 46.29 72.96 80.22 51.11 45.99 73.13 83.75 75.19

PSO-KDE 45.79 72.81(=) 80.54(=) 50.02(-) 45.91 73.35(+) 83.66(=) 75.15(=)

(g) Sonar

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 100 58.25 56.93 51.98 100 49.26 50.9 51.23

0.6
PSO-C 4.34 53.19 53.01 50.41 4.34 48.47 49.94 51.45

PSO-KDE 4.34 53.07(=) 52.86(=) 50.84(+) 4.34 48.59(=) 50.06(=) 51.43(=)

0.8
PSO-C 4.35 53.19 52.94 50.5 4.35 48.47 50.01 51.4

PSO-KDE 4.44 53.21(=) 52.9(=) 50.67(=) 4.44 48.67(=) 50.1(=) 51.51(=)

1.0
PSO-C 72.2 57.36 56.92 52.06 72.2 49.7 51.0 51.15

PSO-KDE 72.23 57.55(=) 56.93(=) 52.06(=) 72.23 49.65(=) 51.01(=) 51.14(=)

(h) Hillvalley

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 166 74.59 86.97 65.36 166 64.59 86.97 65.36

0.6
PSO-C 11.21 73.13 76.46 68.91 11.2 73.11 76.51 68.98

PSO-KDE 11.81 73.67(=) 76.91(=) 68.03(=) 11.81 73.67(=) 76.91(=) 68.03(=)

0.8
PSO-C 11.19 73.05 76.31 69.23 11.24 73.17 76.4 69.28

PSO-KDE 12.06 73.65(=) 76.92(=) 68.28(=) 12.06 73.65(=) 76.92(=) 68.28(=)

1.0
PSO-C 113.27 75.59 85.9 74.89 113.27 75.59 85.93 74.89

PSO-KDE 113.7 75.1(=) 86.01(=) 74.92(=) 113.7 75.1(=) 86.01(=) 74.92(=)

(i) Musk1

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 278 94.86 93.57 94.96 278 94.86 93.57 94.96

0.6
PSO-C 41.85 93.71 93.3 93.75 41.85 93.71 93.3 93.75

PSO-KDE 41.79 93.71(=) 93.29(=) 93.75(=) 41.79 93.71(=) 93.29(=) 93.75(=)

0.8
PSO-C 42.42 93.91 93.48 93.85 42.42 93.91 93.48 93.85

PSO-KDE 42.24 93.89(=) 93.5(+) 93.84(=) 42.24 93.89(=) 93.5(+) 93.84(=)

1.0
PSO-C 174.63 94.67 93.75 95.01 174.63 94.67 93.75 95.01

PSO-KDE 174.67 94.67(=) 93.75(=) 95.01(=) 174.67 94.67(=) 93.75(=) 95.01(=)

(j) Arrhythmia

3.4. RESULTS AND DISCUSSION 87

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 500 78.58 72.88 50.0 500 79.69 57.62 50.0

0.6
PSO-C 70.4 56.43 53.84 50.72 70.4 56.13 51.15 52.89

PSO-KDE 70.39 58.11(=) 54.74(=) 50.85(=) 70.39 57.59(=) 51.56(=) 53.7(=)

0.8
PSO-C 70.29 56.8 53.94 50.72 70.29 56.72 51.65 52.82

PSO-KDE 70.48 58.58(=) 55.15(=) 50.96(=) 70.48 58.29(=) 51.93(=) 54.05(+)

1.0
PSO-C 297.56 76.73 71.6 50.0 297.56 78.74 57.01 59.85

PSO-KDE 297.68 76.85(=) 71.16(=) 50.0(=) 297.68 78.26(=) 56.8(=) 59.96(=)

(k) Madelon

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 649 98.62 98.99 82.0 649 98.48 99.6 82.15

0.6
PSO-C 110.84 97.41 98.45 98.4 110.84 97.46 99.25 98.98

PSO-KDE 108.71 97.38(=) 98.46(=) 98.37(=) 108.71 97.48(=) 99.28(=) 98.97(=)

0.8
PSO-C 110.18 97.55 98.39 98.47 110.18 97.61 99.28 98.99

PSO-KDE 110.13 97.55(=) 98.23(=) 98.46(=) 110.13 97.64(=) 99.3(=) 99.02(=)

1.0
PSO-C 382.24 98.49 98.87 82.0 382.24 98.46 99.57 99.2

PSO-KDE 384.55 98.46(=) 98.86(=) 82.0(=) 384.55 98.46(=) 99.57(=) 99.17(=)

(l) Multiple Features

in almost all cases PSO-KDE achieves similar or better performance than
PSO-C in the three classification algorithms.

On the discrete version of each dataset, PSO-KDE also achieves similar
or better performance than PSO-C. In most cases, PSO-KDE outperforms
PSO-C when α is set to 0.8. For example, on the Vehicle dataset (Table
(3.2c)), the improvements of PSO-KDE over PSO-C on KNN, DT and NB
are 4.5%, 4%, and 7% respectively. Despite selecting the same number
of features, with α = 0.8, PSO-KDE’s accuracies on all the three classi-
fication algorithms are up to 1% higher than the results of PSO-C. The
experimental results show that KDE is not only able to cope with both
continuous and discrete datasets but also guides PSO to achieve similar or
better classification performance than the counting approach, which only
works well with discrete datasets. However, when α is smaller than 1,
PSO-KDE achieves lower classification accuracy than using all features.
Only when α is set to 1.0, PSO-KDE achieves comparative classification
accuracy while selecting about half of the original features. The possible
reason is that the redundancy makes both PSO-based algorithms remove

88 CHAPTER 3. MUTUAL INFORMATION FOR FS

too many features from the original feature set (up to 90%), which may
contain many relevant features.

In terms of the number of selected features, when α increases, which
means the contribution of redundancy into the fitness function decreases,
the numbers of features selected by both PSO-KDE and PSO-C increase.
The extreme case is when redundancy is ignored (α = 1.0), on the datasets
with small numbers of features, almost all original features are selected.
Meanwhile, when the number of original features is larger, the proportion
of selected features is smaller. The reason might be that a dataset with a
large number of features might contain many irrelevant features.

Given a smaller contribution of redundancy, the number of features
selected by both PSO-KDE and PSO-C are smaller. However, it does not
mean that the redundancy measure works well in this case. The reason
is that Redundancypw, which is shown in Eq. (3.5), is a monotonic func-
tion. Regardless of which features are selected, adding any feature into
the feature subset results in additional MI, which increases Redundancypw
because mutual information is non-negative. In this case, it only can be
confirmed that PSO does find out optimal or near-optimal feature subsets
when α = 1.0. It would be difficult to analyze the effect of Relevancepw
and Redundancypw in the real datasets since the optimal feature subset is
unknown. Therefore, a deep analysis on the artificial datasets is provided
in the next section.

3.4.2 Artificial Datasets

Tables 3.3 and 3.4 show respectively the test accuracies and the feature
subsets selected by PSO-C and PSO-KDE on the seven artificial datasets.
Given a specific α value, the best testing accuracy on each dataset is marked
in bold. The results of two datasets Binary 1 and Binary 2 are not shown
because DT, KNN, and NB are not able to classify these problems (0% ac-
curacy). In terms of the classification accuracy, as can be seen from Table

3.4. RESULTS AND DISCUSSION 89

3.3, PSO-KDE achieves similar or significantly better results than PSO-C.
The largest difference between the two algorithms is in the Monk 1 dataset,
where PSO-KDE’s accuracies are about 25% better PSO-C’s accuracies.

The more important factor to be considered in the artificial datasets is
the evolved feature subsets. For each α value, feature selection algorithms
are run 30 independent times on each dataset. The 10-fold cross validation
is also used on the artificial datasets. Therefore there will be 300 (30×10)
feature subsets generated for each α value and each dataset. The feature
subsets selected by PSO-C and PSO-KDE are shown in Table 3.4. In the
table, all indexes of selected features are in the curly brackets, which fol-
lows by the number of times that the feature subset is selected. For exam-
ple,

〈
{0,1,2}: 300

〉
means that the feature subset {f0, f1, f2} are selected 300

times.

In two Binary datasets, the optimal set is the original feature set. Ac-
cording to the experimental results, regardless of the values of α, the orig-
inal feature set is selected by PSO-KDE in more than 98% of the 300 times.
Because there is no redundancy in these datasets, the α values should not
affect on the evolved feature subsets. Therefore, the redundancy measured
by KDE works well in this case. For the counting approach, the propor-
tion of the original feature set to all feature subset ranges from 20% to
100% when α increases from 0.6 to 1.0. When redundancy contributes to
the fitness function, counting approach still results in a smaller set than the
optimal set regardless of the fact that redundancy should be 0. Therefore,
it can be seen that the redundancy measured by the counting approach
does not work well on Binary datasets. Particularly, redundancy between
two independent features, measured by the counting approach is greater
than 0.

In the Monk 1 dataset, the optimal feature subset is {f0, f1, f4} and there
is no redundancy in this dataset. Three features f2, f3, and f5 are irrelevant
to the class label. Once more, since the redundancy in this dataset is 0, the
α values should not affect the selected feature subsets. This fact is com-

90 CHAPTER 3. MUTUAL INFORMATION FOR FS

Table 3.3: Testing accuracies on artificial datasets.

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 6 85.87 94.21 75.0 6 85.87 94.21 75.0

0.6
PSO-C 1.59 75.0 63.22 75.0 1.59 75.0 63.22 75.0

PSO-KDE 3.0 99.77(+) 100.0(+) 75.0(=) 3.0 99.77(+) 100.0(+) 75.0(=)

0.8
PSO-C 2.79 75.0 66.79 75.0 2.79 75.0 66.79 75.0

PSO-KDE 3.0 99.77(+) 100.0(+) 75.0(=) 3.0 99.77(+) 100.0(+) 75.0(=)

1.0
PSO-C 5.94 85.88 93.2 75.0 5.94 85.88 93.2 75.0

PSO-KDE 3.0 99.77(+) 100.0(+) 75.0(=) 3.0 99.77(+) 100.0(+) 75.0(=)

(a) Monk 1

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 6 79.63 69.46 66.45 6 79.63 69.46 66.45

0.6
PSO-C 4.67 65.96 57.58 66.26 4.67 65.96 57.58 66.26

PSO-KDE 5.94 78.92(+) 68.7(+) 66.48(+) 5.94 78.92(+) 68.7(+) 66.48(+)

0.8
PSO-C 5.24 69.83 62.04 66.24 5.24 69.83 62.04 66.24

PSO-KDE 5.94 78.92(+) 68.7(+) 66.48(+) 5.94 78.92(+) 68.7(+) 66.48(+)

1.0
PSO-C 5.95 78.84 68.74 66.46 5.95 78.84 68.74 66.46

PSO-KDE 5.94 78.92(=) 68.7(=) 66.48(=) 5.94 78.92(=) 68.7(=) 66.48(=)

(b) Monk 2

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 6 100.0 99.54 97.23 6 100.0 99.54 97.23

0.6
PSO-C 3.29 100.0 100.0 97.23 3.29 100.0 100.0 97.23

PSO-KDE 3.0 100.0(=) 100.0(=) 97.23(=) 3.0 100.0(=) 100.0(=) 97.23(=)

0.8
PSO-C 3.97 100.0 100.0 97.23 3.97 100.0 100.0 97.23

PSO-KDE 3.0 100.0(=) 100.0(=) 97.23(=) 3.0 100.0(=) 100.0(=) 97.23(=)

1.0
PSO-C 5.97 100.0 99.53 97.23 5.97 100.0 99.53 97.23

PSO-KDE 3.0 100.0(=) 100.0(+) 97.23(=) 3.0 100.0(=) 100.0(+) 97.23(=)

(c) Monk 3

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 4 92.5 94.5 46.0 4 92.5 94.5 46.0

0.6
PSO-C 1.0 69.5 69.3 54.0 1.0 69.5 69.3 54.0

PSO-KDE 2.0 92.5(+) 94.5(+) 54.0(=) 2.0 92.5(+) 94.5(+) 54.0(=)

0.8
PSO-C 1.0 69.5 69.3 54.0 1.0 69.5 69.3 54.0

PSO-KDE 2.0 92.5(+) 94.5(+) 54.0(=) 2.0 92.5(+) 94.5(+) 54.0(=)

1.0
PSO-C 4.0 92.5 94.5 46.0 4.0 92.5 94.5 46.0

PSO-KDE 2.0 92.5(=) 94.5(=) 54.0(+) 2.0 92.5(=) 94.5(=) 54.0(+)

(d) 2-way linear

α Method Con-Size Con-DT Con-KNN Con-NB Dis-Size Dis-DT Dis-KNN Dis-NB

Full 4 99.5 95.5 52.0 4 99.5 95.5 52.0

0.6
PSO-C 1.0 80.4 76.13 48.0 1.0 80.4 76.13 48.0

PSO-KDE 2.8 99.5(+) 95.0(+) 48.0(=) 2.8 99.5(+) 95.0(+) 48.0(=)

0.8
PSO-C 1.0 80.4 76.13 48.0 1.0 80.4 76.13 48.0

PSO-KDE 2.8 99.5(+) 95.0(+) 48.0(=) 2.8 99.5(+) 95.0(+) 48.0(=)

1.0
PSO-C 4.0 99.5 95.5 52.0 4.0 99.5 95.5 52.0

PSO-KDE 2.8 99.5(=) 95.0(-) 48.0(-) 2.8 99.5(=) 95.0(-) 48.0(-)

(e) 3-way linear

3.4. RESULTS AND DISCUSSION 91

Table 3.4: Selected feature subsets (all indexes of features are in the curly
brackets followed by the number of times the feature subset is selected).

PSO-C PSO-KDE

α =0.6
〈
{0, 1, 2} : 90

〉
,
〈
{0, 1} : 73

〉
,
〈
{1, 2} : 46

〉
,
〈
{2} :

30
〉

,
〈
{0} : 30

〉
,
〈
{1} : 30

〉
,
〈
{0, 2} : 1

〉 〈
{0, 1, 2} : 293

〉
,
〈
{0} : 3

〉
,
〈
{1} : 3

〉
,
〈
{2} : 1

〉
α =0.8

〈
{0, 1, 2} : 210

〉
,
〈
{0, 1} : 42

〉
,
〈
{0, 2} : 39

〉
,〈

{1, 2} : 9
〉 〈

{0, 1, 2} : 297
〉

,
〈
{1} : 2

〉
,
〈
{2} : 1

〉
α =1.0

〈
{0, 1, 2} : 300

〉 〈
{0, 1, 2} : 297

〉
,
〈
{2} : 1

〉
,
〈
{0} : 1

〉
,
〈
{1} : 1

〉
(a) Binary 1 (Optimal subset: {f0, f1, f2})

PSO-C PSO-KDE

α =0.6
〈
{0} : 100

〉
,
〈
{2} : 85

〉
,
〈
{0, 1, 2} : 60

〉
,
〈
{1} : 35

〉
,〈

{1, 2} : 10
〉

,
〈
{0, 1} : 8

〉
,
〈
{0, 2} : 2

〉 〈
{0, 1, 2} : 300

〉
α =0.8

〈
{0, 2} : 75

〉
,
〈
{0, 1} : 68

〉
,
〈
{0, 1, 2} : 61

〉
,
〈
{1, 2} :

58
〉

,
〈
{2} : 17

〉
,
〈
{0} : 15

〉
,
〈
{1} : 6

〉 〈
{0, 1, 2} : 300

〉
α =1.0

〈
{0, 1, 2} : 240

〉
,
〈
{2} : 18

〉
,
〈
{0} : 15

〉
,
〈
{1, 2} : 9

〉
,〈

{0, 1} : 8
〉

,
〈
{1} : 8

〉
,
〈
{0, 2} : 2

〉 〈
{0, 1, 2} : 300

〉
(b) Binary 2 (Optimal subset: {f0, f1, f2})

PSO-C PSO-KDE

α =0.6
〈
{4} : 122

〉
,
〈
{3, 4} : 118

〉
,
〈
{1, 4} : 57

〉
,
〈
{2, 4} : 3

〉 〈
{0, 1, 4} : 300

〉
α =0.8

〈
{0, 3, 4} : 60

〉
,
〈
{1, 2, 4} : 39

〉
,
〈
{4} : 30

〉
,
〈
{1, 4} :

30
〉

,
〈
{3, 4} : 30

〉
,
〈
{0, 2, 4, 5} : 30

〉
,
〈
{3, 4, 5} : 30

〉
,〈

{1, 2, 3, 4} : 28
〉

,
〈
{2, 3, 4} : 19

〉
,
〈
{2, 4, 5} : 2

〉
,〈

{1, 3, 4} : 2
〉

〈
{0, 1, 4} : 300

〉

α =1.0
〈
{0, 1, 2, 3, 4, 5} : 281

〉
,

〈
{0, 1, 2, 3, 4} : 6

〉
,〈

{1, 2, 3, 4, 5} : 4
〉

,
〈
{0, 2, 3, 4, 5} : 4

〉
,〈

{0, 1, 3, 4, 5} : 4
〉

,
〈
{0, 1, 2, 4, 5} : 1

〉
〈
{0, 1, 4} : 300

〉

(c) Monk 1 (Optimal subset: {f0, f1, f4})

PSO-C PSO-KDE

α =0.6
〈
{0, 1, 3, 4} : 98

〉
,

〈
{0, 1, 2, 3, 4} : 59

〉
,〈

{0, 1, 2, 3, 4, 5} : 59
〉

,
〈
{0, 1, 3, 4, 5} : 54

〉
,〈

{0, 1, 3} : 28
〉

,
〈
{0, 1, 4} : 2

〉
〈
{0, 1, 2, 3, 4, 5} : 282

〉
,

〈
{0, 2, 3, 4, 5} : 7

〉
,〈

{0, 1, 2, 3, 5} : 6
〉

,
〈
{0, 1, 2, 4, 5} : 4

〉
,〈

{0, 1, 2, 3, 4} : 1
〉

α =0.8
〈
{0, 1, 2, 3, 4, 5} : 114

〉
,

〈
{0, 1, 3, 4, 5} : 81

〉
,〈

{0, 1, 2, 3, 4} : 62
〉

,
〈
{0, 1, 3, 4} : 42

〉
,
〈
{0, 1, 3, 5} :

1
〉

〈
{0, 1, 2, 3, 4, 5} : 282

〉
,

〈
{0, 2, 3, 4, 5} : 7

〉
,〈

{0, 1, 2, 3, 5} : 6
〉

,
〈
{0, 1, 2, 4, 5} : 4

〉
,〈

{0, 1, 2, 3, 4} : 1
〉

α =1.0
〈
{0, 1, 2, 3, 4, 5} : 285

〉
,

〈
{0, 1, 2, 3, 4} : 11

〉
,〈

{0, 1, 3, 4, 5} : 4
〉 〈

{0, 1, 2, 3, 4, 5} : 282
〉

,
〈
{0, 2, 3, 4, 5} : 7

〉
,〈

{0, 1, 2, 3, 5} : 6
〉

,
〈
{0, 1, 2, 4, 5} : 4

〉
,〈

{0, 1, 2, 3, 4} : 1
〉

(d) Monk 2 (Optimal subset: {f0, f1, f2, f3, f4, f5})

PSO-C PSO-KDE

α =0.6
〈
{1, 3, 4} : 214

〉
,
〈
{1, 3, 4, 5} : 57

〉
,
〈
{1, 2, 3, 4} : 29

〉 〈
{1, 3, 4} : 300

〉
α =0.8

〈
{1, 2, 3, 4} : 88

〉
,
〈
{1, 3, 4, 5} : 87

〉
,
〈
{1, 3, 4} :

66
〉

,
〈
{0, 1, 2, 3, 4} : 28

〉
,
〈
{0, 1, 3, 4, 5} : 28

〉
,〈

{0, 1, 3, 4} : 3
〉

〈
{1, 3, 4} : 300

〉

α =1.0
〈
{0, 1, 2, 3, 4, 5} : 290

〉
,

〈
{0, 1, 2, 3, 4} : 6

〉
,〈

{1, 2, 3, 4, 5} : 4
〉 〈

{1, 3, 4} : 300
〉

(e) Monk 3 (Optimal subset: {f1, f3, f4})

92 CHAPTER 3. MUTUAL INFORMATION FOR FS

PSO-C PSO-KDE

α =0.6
〈
{0} : 110

〉
,
〈
{3} : 80

〉
,
〈
{2} : 70

〉
,
〈
{1} : 40

〉 〈
{2, 3} : 110

〉
,
〈
{1, 2} : 81

〉
,
〈
{0, 1} : 60

〉
,
〈
{0, 3} :

49
〉

α =0.8
〈
{0} : 110

〉
,
〈
{3} : 80

〉
,
〈
{2} : 70

〉
,
〈
{1} : 40

〉 〈
{2, 3} : 110

〉
,
〈
{1, 2} : 80

〉
,
〈
{0, 1} : 60

〉
,
〈
{0, 3} :

50
〉

α =1.0
〈
{0, 1, 2, 3} : 300

〉 〈
{2, 3} : 110

〉
,
〈
{1, 2} : 80

〉
,
〈
{0, 1} : 60

〉
,
〈
{0, 3} :

50
〉

(f) 2-way linear (Optimal subset: {f0, f1}, {f0, f3}, {f1, f2}, {f2, f3})

PSO-C PSO-KDE

α =0.6
〈
{0} : 110

〉
,
〈
{3} : 80

〉
,
〈
{2} : 70

〉
,
〈
{1} : 40

〉 〈
{1, 2, 3} : 144

〉
,
〈
{0, 1, 2} : 96

〉
,
〈
{0, 1} : 32

〉
,〈

{1, 3} : 28
〉

α =0.8
〈
{0} : 110

〉
,
〈
{3} : 80

〉
,
〈
{2} : 70

〉
,
〈
{1} : 40

〉 〈
{1, 2, 3} : 144

〉
,
〈
{0, 1, 2} : 96

〉
,
〈
{0, 1} : 32

〉
,〈

{1, 3} : 28
〉

α =1.0
〈
{0, 1, 2, 3} : 300

〉 〈
{1, 2, 3} : 144

〉
,
〈
{0, 1, 2} : 96

〉
,
〈
{0, 1} : 32

〉
,〈

{1, 3} : 28
〉

(g) 3-way linear (Optimal subset: {f2})

pletely reflected by PSO-KDE which selects the optimal subset {f0, f1, f4}
all the 300 times. Meanwhile, PSO-C selects very different feature subsets
even within the same α values. On all α values, f2 and f3 appear frequently
in the feature subsets, which indicates that the relevance calculated by the
counting approach still gives some scores to these irrelevant features. An
obvious evidence is that PSO-C selects all features when α = 1, which
means the irrelevant features are selected. For the Monk 2 dataset, it is
important to select all original features. According to the experimental re-
sults, for all values of α, PSO-KDE always selects no less than 5 features,
in which all features are selected more than 280 times out of the 300 times.
Meanwhile, the size of feature subsets selected by PSO-C ranges from 3 to
6 features. In the Monk 3 dataset, the most complicated Monk dataset, the
optimal feature subset is { f1, f3 ,f4}, which is also selected by PSO-KDE in
all cases regardless of the α values. Meanwhile, PSO-C still selects irrele-
vant features like f0, f2 and f5 very frequently. With the Monk datasets, it
can be seen that the counting-based approach, PSO-C, is not able to detect
irrelevant features, which is done well by the estimation-based approach,
PSO-KDE.

In the remaining two artificial datasets, the 2-way and 3-way linear

3.4. RESULTS AND DISCUSSION 93

datasets, there is no irrelevant feature but there are redundant features. In
the 2-way linear dataset, the class label can be determined by one of the
following feature subsets {f0, f1}, {f0, f3}, {f1, f2} and {f2, f3}, which are
also the only 4 feature subsets selected by PSO-KDE. On the other hand,
PSO-C always selects a single feature when α is set to 0.6 or 0.8. Once more
the result shows that the redundancy between two independent features
is not correctly calculated by the counting approach. In addition, the KDE
approach is able to detect the complementary feature subsets, although it
is a hard problem when pair-wise fitness function is used. On the 3-way
linear dataset, once more PSO-C always selects a single feature when α

is less than 1.0. On the other hand, PSO-KDE selects only 4 feature sub-
sets, which are {f1, f2, f3}, {f0, f1, f2}, {f0, f1} and {f1, f3}. PSO-KDE never
selects f0 and f3 together because they are redundant. According to the
linear datasets, KDE is able to detect the complementary feature subset
and remove the redundant features, which can not be done by the count-
ing approach.

The experimental results suggest that KDE for mutual information works
well on both continuous and discrete datasets. The feature subsets gen-
erated by KDE achieve similar or better classification performance than
the counting approach. The main reason is that the counting approach
can not correctly calculate the redundancy measure and detect the com-
plementary interaction between features, which can be achieved by KDE.
The following simple example demonstrates that the counting approach
fails to calculate redundancy in a continuous dataset.

As can be seen that, f1 and f2 are two independent variables, so their
mutual information is expected to be 0. When the Counting approach is
applied, it does not consider that 1.1 and 1.15 are two similar values (simi-
larly 2.2 and 2.23). Therefore, under the Counting approach f1 has 2 possi-
ble values, f2 has 4 possible values. so H(f1) = 1, H(f2) = 2. The joint vari-
ables (f1, f2) has 4 possible values, so H(f1, f2) = 2. Thus, the Counting
approach results in MIC(f1, f2) = 2 + 1− 2 = 1 >0, which indicates that f1

94 CHAPTER 3. MUTUAL INFORMATION FOR FS

Table 3.5: Example of redundancy calculated by KDE and Counting.

f1 f2

3 1.1
3 2.2
4 1.15
4 2.23

and f2 are not independent. When the KDE approach is used, it takes the
distances between values into account, so 1.1 and 1.15 are considered one
value (similarly 2.2 and 2.23). Therefore, f2 has only 2 possible values, and
H(f2) = 1. Thus, the KDE approach results inMIKDE(f1, f2) = 1+1−2 = 0

, which indicates that f1 and f2 are independent.

3.4.3 Consistency of PSO-KDE and PSO-C

As can be seen from the results, on most datasets the order of classification
accuracies is preserved after the feature selection process. For example,
in the Vehicle dataset, the highest classification accuracy belongs to DT
classifier and KNN is the second best classifier. After performing feature
selection using either KDE or the counting approach, the best classifier is
still DT, which is followed by KNN. The consistent results show that the
mutual information measure does not produce features particularly bias
to any classification algorithm. Mutual information is able to extract a
general feature subset, which is meaningful to all the three classification
algorithms. This is the property of filters, which is preserved by both PSO-
KDE and PSO-C.

3.4.4 ANOVA Test Analysis

Since the counting and estimation approaches are compared on 12 dif-
ferent real-world datasets, using Wilcoxon test is not enough to confirm

3.4. RESULTS AND DISCUSSION 95

Table 3.6: ANOVA test results

Factor F value Pr(>f) Significant

Method 1757.806 <2e-16 *
Dataset 3963.685 <2e-16 *
TypeDataset 1018.247 <2e-16 *
Classifier 4939.826 <2e-16 *
Method : Dataset 239.405 <2e-16 *
Method : TypeDataset 37.153 1.12e-09 *
Method : Classifier 259.040 <2e-16 *

which method is better since this is a multi-test problem. An ANOVA
test (Analysis of Variance), with a confidence interval of 0.95, is run to
compare the two methods and shows the interactions between the two
methods and other factors such as datasets, kinds of datasets and classi-
fication algorithms. The test results are shown in Table 3.6, in which “F
value”, “Pr(>f)” are the obtained F-value and p-value. If the p-value is less
than the significance level (0.05), the corresponding factor or interacting
factor has a significant effect on the classification accuracy which is shown
by “*” in the “Significant” column. It can be seen that the interactions be-
tween methods and other factors produce significant different accuracies,
which means KDE and the counting approach are significantly different
on different datasets, different types of datasets and different classification
algorithms.

In order to see which method is better, Fig 3.2 plots these interactions
in terms of the classification accuracy. In the figures, “c” and “e” stands
for “counting” and “KDE” methods, respectively. As can be seen from
the figure, the “e” line is always on the top of the “c” line, which means
that KDE is better than the counting approach in different levels of other
factors such as datasets, types of datasets or classification algorithms.

3.4.5 Computational Cost

The computational costs of PSO-KDE and PSO-C are shown in Table 3.7.
As can be seen from the table, PSO-KDE is more expensive than PSO-C.

96 CHAPTER 3. MUTUAL INFORMATION FOR FS

Figure 3.2: Comparisons between two methods with different factors

76
78

80
82

84
86

Method:Classifier

A
cc

ur
ac

y

DT KNN NB

e
c

65
70

75
80

85
90

95
10

0

Method:Dataset

A
cc

ur
ac

y

2way australian monk1 musk1 wbcd

e
c

78
79

80
81

82
83

84

Method:TypeDataset

A
cc

ur
ac

y

Con Dis

e
c

Table 3.7: Computational time on real-world datasets

Datset PSO-KDE (ms) PSO-C (ms)

Wine 344.49 38.74
Australian 74.19 1.61
Vehicle 244.7 1.64
German 145.45 2.19
WBCD 6288.96 88.69
Ionosphere 4941.29 98.97
Sonar 6819.77 187.77
Hillvalley 5584.8 7.93
Musk1 253546.83 424.43
Arrhythmia 4020.61 36.22
Madelon 926408.74 58.92
MultipleFeatures 786234.85 88.66

Binary 1 0.77 0.5
Binary 2 0.75 0.46
Monk 1 39.49 0.55
Monk 2 69.78 0.64
Monk 3 43.83 0.55
2-way linear 8.01 0.45
3-way linear 11.11 0.57

3.5. CHAPTER SUMMARY 97

The reason is that in order to calculate the mutual information, KDE needs
to calculate distances from each instance to all other instances, which is
about N times slower than the counting approach (N is the total number
of available instances).

3.5 Chapter Summary

The goal of this chapter is to propose a new mutual information-based fit-
ness function for a PSO-based feature selection algorithm, which can work
directly on continuous datasets without any pre-processing step such as
discretization. To achieve this goal, instead of the traditional counting ap-
proach, kernel density estimation (KDE) is used to estimate mutual infor-
mation. The experimental results show that KDE assists PSO to achieve
similar or better classification performance than the counting approach on
both continuous and discrete datasets.

This chapter shows that the mutual information estimation can over-
come the limitation of the counting approach, which usually requires a
large number of instances to derive reliable probability distributions for
each feature. Mutual information estimation, specifically KDE, can cap-
ture the interactions between features more accurately than the counting
approach. Particularly, KDE, which is originally proposed for continuous
datasets, can work well on both continuous and discrete datasets. Mean-
while, the counting approach achieves good performance only on discrete
datasets. In terms of detecting feature interactions, KDE is able to handle
redundant and irrelevant features, which cannot be achieved by the count-
ing approach. KDE can also detect complementary features, which assist
PSO to select the optimal feature subsets on the artificial datasets.

However, in terms of the efficiency, the estimation method, KDE, is
still slower than the counting approach. Since the estimation cost depends
mainly on the number of instances, the estimation’s efficiency can be im-
proved if the number of instances decreases. In addition, removing noisy

98 CHAPTER 3. MUTUAL INFORMATION FOR FS

instances may also increase the accuracy of the estimator. Therefore, it
is important to develop instance selection algorithms along with feature
selection algorithms. In addition, as can be seen from Table 3.2, when α

is smaller than 1, the testing accuracy decreases because the number of
selected features is too small. It is important to well balance the num-
ber of selected features and the classification accuracy. A solution to this
problem is to develop multi-objective methods which can consider both
objectives, including classification accuracies and the number of selected
features. In terms of searching mechanisms, this chapter applies continu-
ous PSO to achieve feature selection although feature selection is a binary
combinatorial problem. In the next chapter, this problem will be addressed
by a novel binary PSO algorithm which is expected to cope well with the
characteristics of binary search spaces to evolve better solutions for binary
problems.

Chapter 4

Novel Binary PSO for Feature
Selection

4.1 Introduction

The original PSO is continuous PSO (CPSO) which is applied and ex-
tended to solve many continuous problems [200]. In CPSO, particles can
move smoothly in a direction, so defining a velocity as a vector of real
numbers is meaningful. PSO is also extended to solve binary problems
i.e. binary PSO (BPSO) in which each particle’s position is a vector of
binary numbers. In standard BPSO [29], the velocity and momentum con-
cepts of CPSO are directly applied to BPSO. However, in a binary search
space, a particle moves by flipping its position entries. Such a movement
is not correctly described as a velocity, and directly applying the notions of
speed, direction, and momentum to the binary domain is not valid. This
inappropriate application leads to BPSO’s limited performance compared
with CPSO [99].

As shown in Chapter 2, velocity in PSO has three main components:
momentum, cognitive, and social factors. It is important to control contri-
butions of the three components to balance between exploitation and explo-
ration during the search process [201]. The exploration ability corresponds

99

100 CHAPTER 4. NOVEL BPSO FOR FS

to a tendency to discover new search regions, while the exploitation abil-
ity corresponds to finding the best solution within the current region. The
balance between exploration and exploitation relates directly to the iner-
tia weight and the two acceleration parameters [202], which control the
momentum, cognitive and social components, respectively. In CPSO, a
larger inertia weight, which gives a larger momentum, results in more ex-
ploration and a smaller inertia weight guides the swarm to focus more on
exploitation. A control strategy, which starts with a high inertia weight
and gradually decreases the weight, results in more exploration at the be-
ginning and more exploitation at the end of each run, and has been widely
used in CPSO.

However, the inertia weight in BPSO has an opposite effect, which is
shown in [203] and theoretically proved in [97] (on the assumption that
pbest and gbest are not changed). In contrast to CPSO, the velocity in BPSO
does not directly determine the new position of a particle. It is used to
derive the probability of the position entry being 1. This makes BPSO’s
movement very different from that of CPSO. In addition, since the move-
ment to the new position ignores the previous location, one cannot say the
new position is far or close to the previous location.

The velocity, momentum, exploration, and exploitation in BPSO need
appropriate formations so that the particles can move through a binary
search space in a meaningful way. However, no existing work is per-
formed to specify the concepts in BPSO. The aim of this chapter is to de-
velop a new BPSO algorithm in which the binary movement is reflected
more accurately and the balance between exploration and exploitation is
better controlled.

4.1.1 Chapter Goal

The overall goal of this chapter is to develop a new BPSO algorithm, which
can consider properties of binary search spaces to explore the search space

4.1. INTRODUCTION 101

more effectively and produce better solutions for binary problems. In or-
der to achieve this goal, the key concepts, which are momentum and ve-
locity, are revised so that the particles move around the search space us-
ing more effective mechanisms. In addition, a dynamic parameter setting
strategy is developed to further enhance the proposed BPSO’s search abil-
ity by considering the trade-off between exploration and exploitation. The
proposed BPSO algorithm is compared with three EC algorithms, which
are Genetic Algorithms (GAs) [79], Up BPSO [97] and Binary Differential
Evolution (DE) [?]. The comparisons are performed on two types of well-
known binary problems: knapsack and feature selection. Specifically, we
will investigate the following objectives:

• Investigate whether applying the two revised concepts can help BPSO
to evolve better solutions (i.e. item subsets) with higher profit in the
knapsack problems;

• Investigate whether the new momentum and velocity can assist the
particles to better explore the large and complex search space of fea-
ture selection, and can result in smaller feature subsets with higher
classification performance;

• Investigate whether the proposed dynamic parameter setting strat-
egy can balance between exploration and exploitation to further im-
prove the search ability of BPSO on both knapsack and feature selec-
tion problems; and

• Analyze the effect of the two revised concepts and the dynamic strat-
egy in terms of exploration and exploitation during the BPSO’s search
process.

102 CHAPTER 4. NOVEL BPSO FOR FS

4.2 Proposed Algorithm

This section presents the new momentum and velocity concepts for BPSO.
It then defines exploration and exploitation capabilities to cope with the
movement strategy of the particles. Based on the definitions of the two
capabilities, a dynamic strategy is developed to better control the trade-
off between these capabilities.

4.2.1 Sticky BPSO (SBPSO)

In standard BPSO [29], the new position is determined without consider-
ing the previous position, which can be seen in Eq. (4.1).

xt+1
d =

1, if rand() ≤ 1

1 + e−v
t+1
d

0, otherwise
(4.1)

Particles do not move smoothly as in CPSO since they change their posi-
tions by flipping position entries either from 0 to 1 or from 1 to 0. This
kind of probabilistic binary change cannot be usefully described as a con-
tinuous velocity. Rather it is better to describe the change in terms of the
probability of flipping. Therefore, a flipping vector p is used in the pro-
posed method instead of the velocity vector, in which each entry shows
the probability of flipping the corresponding position entry.

To guide particles toward promising regions, the PSO velocity vector
consists of three main components: momentum, cognitive and social fac-
tors. All the three factors need modification for the binary domain. Similar
to velocity, momentum is a fundamental continuous concept and needs to
be replaced by a more appropriate concept that still captures the role of
momentum in CPSO. In CPSO, the momentum corresponds to a tendency
to keep moving in the current direction. However in BPSO, instead of
moving in a direction, a particle’s movement is described as whether its
entries are flipped or not. Therefore, in BPSO, the momentum is replaced

4.2. PROPOSED ALGORITHM 103

by a measure of the tendency to stick with the current position, which
we call stickiness, or stk for short. The idea is that a high stickiness for
an entry means that the particle should stick with the current value for a
while, so that the particle can exploit around the entry’s value, rather than
switching to a different region of the space. If the stickiness of an entry is
set to a high value and has not been changed for a while or never changes,
the particle might get stuck in an unproductive region. Therefore, a strat-
egy to control the stickiness is in need.

Currently, the stickiness of an entry is high when the entry is flipped
and it is decayed over time until it is 0 or the entry flips again. A linear
decay is used to reduce the stickiness from 1 to 0 over a fixed number of
steps (ustkS). The stickiness property of the dth bit is updated using:

stkt+1
d =

1, if the bit is just flipped

max(stktd −
1

ustkS
, 0), otherwise

(4.2)

where t means the tth iteration. By using the above way, it can achieve the
idea of stickiness, i.e. if one bit is not flipped for a number of iterations,
its stickiness value stkd will become 0, which significantly increases the
probability of this bit to be flipped (un-stick) in the next iteration. The
number of iterations or steps, which makes a bit un-stick with its current
value, is called ustkS.

The cognitive and social factors (based on pbest and gbest, respectively)
are still important – they guide the particle towards the regions containing
pbest and gbest. However, the acceleration factors (and the random multi-
pliers) are only appropriate in the continuous domain. For binary search
spaces, we need important weights that increase the flipping probability
when the current position is different from the pbest and gbest. Using the
stickiness property in place of the momentum factor and the modified cog-
nitive and social factors, the flipping probability of a particle’s dth position
entry is designed as shown in Eq. (4.3).

pd = is × (1− stkd) + ip × |pbestd − xd|+ ig × |gbestd − xd| (4.3)

104 CHAPTER 4. NOVEL BPSO FOR FS

where is, ip, and ig are the importance of the stickiness, the cognitive and
social factors, respectively. As shown in Eq. (4.3), if gbest and pbest are
not changed, the smaller the stickiness the more likely the dth bit will
be flipped, which gives a high flipping probability to the bit that is not
changed for a large number of iterations.

According to the flipping probability vector, the new position is deter-
mined by Eq. (4.4), which does consider the previous position to deter-
mine the new position.

xt+1
d =

1− xtd , if rand() < pd

xtd ,otherwise
(4.4)

4.2.2 Exploration and Exploitation in SBPSO

In CPSO, a velocity shows how far a particle is going to move from the
current position to the new position. A large velocity facilities exploration
while a small one leads to more exploitation. In a binary search space,
Hamming distance can be used to measure the distance between two bi-
nary solutions, which is the number of bits that the two solutions are dif-
ferent. If a large number of bits are mutated, the particle is exploring the
search space. On the other hand, a few bits being flipped means the par-
ticle exploits the region around the current position. However, this is not
clearly reflected in the standard BPSO algorithm [29] since the updating
equation ignores the previous position. In contrast, the difference between
the new position and previous position is naturally shown by the flipping
operation in SBPSO. As can be seen in Eq. (4.4), pd shows the probabil-
ity of flipping the dth position entry, which means the larger pd the more
likely the entry is flipped. Therefore, more bits to be flipped results in
the particle towards exploration and a smaller probability vector lets the
particle focus more on exploitation. Based on the defined exploration and
exploitation terms in SBPSO, a dynamic strategy is proposed in the next
section to balance the two abilities in SBPSO.

4.2. PROPOSED ALGORITHM 105

4.2.3 Dynamic Strategy

As can be seen from Eq. (4.2) and Eq. (4.3), the flipping probability is
affected by four main parameters, which are is, ip, ig and ustkS. During the
evolutionary process, there might be four possible relationships between
a current position and two best positions, pbest, and gbest, in each bit.
Therefore, Eq. (4.3) can be written as follows based on the four possible
relationships.

pd =

is × (1− stkd) if xd = pbestd = gbestd

is × (1− stkd) + ig if xd = pbestd 6= gbestd

is × (1− stkd) + ip if xd = gbestd 6= pbestd

is × (1− stkd) + ip + ig if xd 6= pbestd = gbestd

(4.5)

Since Eq. (4.5) represents the flipping probability of a single bit, it is
not possible to state exactly whether a case happens at the beginning, the
middle or at the end of the evolutionary process. However, it is more
likely that pbestd 6= gbestd when the searching process has just started and
pbestd = gbestd at the end of the evolutionary process when the swarm
starts converging. Suppose that gbest and pbest have the same contribution
to particles’ movements as in the CPSO algorithm, which means that ip =

ig. The largest value of pd is (is + ip + ig) when a bit is different from
the bit’s value in both pbest and gbest for a number of iterations without
any improvement. Therefore, (is + ip + ig) is set to 1, which ensures the
bit is flipped to match the values of pbest and gbest. According to the
above conditions, both ip and ig have the same value which is (1− is)/2 or
(0.5 − 0.5 ∗ is). By substituting the values into Eq. (4.5), the equation can
be rewritten as below:

pd =

is × (1− stkd) if xd = pbestd = gbestd

0.5 + is × (0.5− stkd) if pbestd 6= gbestd

1− is × stkd if xd 6= pbestd = gbestd

(4.6)

106 CHAPTER 4. NOVEL BPSO FOR FS

where stkd is calculated based on ustkS using Eq. (4.2). Therefore, the flip-
ping probability now mainly depends on two parameters is and ustkS.
For a specific value of is, a smaller ustkS results in a larger pd, more ex-
ploration, while a larger ustkS guides the swarm towards exploitation
because the flipping probability is smaller. On the other hand, suppose
that ustkS is not changed, except for the case (xd 6= pbestd = gbestd), de-
creasing is makes pd smaller, which guides the swarm to exploit more. A
static setting for is and ustkS might just encourage either exploration or
exploitation during the evolutionary process, which results in either miss-
ing optimal solutions or stucking at local optima. Therefore, a dynamic
setting mechanism for is and ustkS is proposed to allow the search pro-
cess to change gradually from exploration to exploitation during the evo-
lutionary process. Particularly, in the proposed mechanism, is is linearly
decreased and ustkS is linearly increased with respect to the number of
iterations, which can be seen in Eq. (4.7).

ustkSt = ustkSL +
t

T
× (ustkSU − ustkSL)

its = iUs −
t

T
× (iUs − iLs) (4.7)

where t stands for the tth iteration, T is the maximum number of iterations,
ustkSU and ustkSL stand for the upper bound and the lower bound of
ustkS, iUs and iLs are the upper bound and the lower bound of is. Since each
bit is likely to be flipped after ustkS iterations, ustkS should be smaller
than the length of a particle, which ensures that there is at least one bit be-
ing flipped in ustkS iterations. Therefore, ustkSL and ustkSU are roughly
bounded by the particle’s dimension.

4.2.4 Overall Structure

The dynamic strategy is applied to propose a new SBPSO algorithm, called
Dynamic SBPSO, which is shown in Fig. 4.1. The standard SBSPO without
the dynamic mechanism is called Static SBPSO. The difference between

4.2. PROPOSED ALGORITHM 107

Figure 4.1: Dynamic SBPSO Overview.

Static and Dynamic SBPSO is the green block, which updates the three
important weights.

The pseudo-code of Dynamic SBPSO is given in Algorithm 2. In the
pseudo-code, the green line is the difference between the Dynamic and
Static SBPSO, where the parameters of Dynamic SBPSO is updated using
Eq. (4.7). The pseudo-code of Static SBPSO can be obtained by removing
the green line.

Algorithm 2 : Pseudo-code of Dynamic Sticky BPSO (SBPSO)

1: randomly initialize the position of each particle;
2: while Maximum iteration is not reached do
3: for i = 1 to PopulationSize do
4: evaluate the fitness of particle i;
5: update the pbest of particle i;
6: end for
7: update gbest for each particle;
8: for i = 1 to PopulationSize do
9: update the stickiness property using Eq. (4.2);

10: update the flipping probability p of the ith particle using Eq. (4.3);
11: update the position of the ith particle using Eq. (4.4);
12: end for
13: update parameters of SBPSO according to Eq. (4.7);
14: end while
15: output the solution represented by gbest;

108 CHAPTER 4. NOVEL BPSO FOR FS

4.3 Experiment Design

In this chapter, the Dynamic (Dyn) and Static SBPSO (Stat) are compared
with GAs, a state-of-the-art dynamic BPSO algorithm named Up BPSO
(Up) [97] and binary DE (DE) [204] - a recently proposed algorithm. A
statistical significance test, called Wilcoxon test with a confidence interval
of 0.95, is used to compare their performance.

4.3.1 Benchmark Problems

Static and Dynamic SBPSO are compared with other algorithms on two
well-known binary problems which are knapsack and feature selection.
Knapsack is a traditional binary optimization problem, which can be de-
scribed as follows: given a set of n items and a knapsack; each dth (d =

1, . . . , n) item has a positive profit pfd and a number of positive resource
consumptions rd1, rd2, . . . , rdm corresponding to m resources; the knapsack
has m capacities Cj(j = 1, . . . ,m) for each resource; the task is to select a
subset of items so that the total profit of the selected items is maximized
while for each resource, the total resource consumption does not exceed
the resource’s capacity. The problem can be described using the following
formula:

max
n∑
d=1

pfd × xd,

s.t. :
n∑
d=1

rdj × xd ≤ Cj,∀j ∈ {1, 2, . . . ,m}

xd ∈ {0, 1},∀d ∈ {1, 2, . . . , n}

where the dth item is selected if and only if xd = 1. Knapsack has been
widely used to evaluate many evolutionary algorithms such as PSO [205,
206, 207, 208], DE [209, 210], GAs [211, 212], and multi-objective algo-
rithms [213].

4.3. EXPERIMENT DESIGN 109

Knapsack’s fitness function is quite easy to calculate. Therefore, it is
chosen as an initial benchmark problem to evaluate the proposed algo-
rithm. Feature selection is another combinatorial problem, which is more
difficult than knapsack because of its computationally intensive fitness
function and the complex interactions between features.

4.3.2 Parameter Settings

In this chapter, a PSO-based algorithm is developed to tune the parameters
of SBPSO algorithms. The parameter is tuning on 5 difficult Knapsack
datasets with different numbers of items and capacities, which are Gk01,
Pet7, Sento2, Weing8 and Weish30 [210]. Knapsack is chosen because of
its low computational cost. Note that the tuning process does not aim to
find a perfect parameter settings working on all problems. The aim is to
have a good enough setting for SBPSO so that its comparisons with other
well-known benchmark algorithms are relatively fair.

Since it is assumed that im + ip + ig = 1, the task is to optimize two
parameters im and ig, from which ip can be obtained easily. However,
from the assumption, there is a constraint that im + ig ≤ 1, which must be
maintained during the evolutionary process. Therefore, in order to make
an easy optimization where all parameters to be optimized are in the range
[0, 1], instead of finding an exact value of ig, we aim to find the ratio of ip
to ig, called α, which means that ip = α× ig. By tuning the two parameters
im and α, the other two parameters ip and ig can be obtained as below:

ig =
1− im
1 + α

(4.8)

ip = α× ig =
α× (1− im)

1 + α
(4.9)

In dynamic SBPSO, im decreases from iUm to iLm, and ustkS increases
from ustkSL to ustkSU . We set 0.05 and 5 as initial values for ustkSL and
iLm, respectively. The two values are selected so that a position entry still

110 CHAPTER 4. NOVEL BPSO FOR FS

Table 4.1: Parameter settings evolved by OP-PSO on each dataset.

Setting Dataset im α ustkS

S1 Gk01 0.7684 1.00 46
S2 Sento2 0.3882 0.99 26
S3 Pet7 0.4984 1.00 36
S4 Weing8 0.6052 0.93 40
S5 Weish30 0.1154 1.0 40

has a small flipping probability when its value is equal to the entry value
in both gbest and pbest. Instead of finding ustkSU , we find ustkSscale =

(ustkSU−ustkSUmin)/(ustkSUmax−ustkSUmin) which ensures all the variables
to be optimized are in the same range [0,1]. In this chapter, ustkSUmin and
ustkSUmax are set to 20 and 60, since the five Knapsack datasets have at least
60 items.

In summary, there are three parameters being optimized, which are
im, α and ustkSscale. Since the three parameters are in the range [0,1], a
standard continuous PSO is used to tune them. The particle’s length is 3,
in which each position entry corresponds to one parameter. For the sake of
convenience, the parameter’s optimization algorithm is named OP-PSO.

In OP-PSO, each particle can be considered a parameter setting strat-
egy, which is applied to SBPSO to find an item subset with the highest to-
tal profit. Each SBPSO algorithm with the specific parameter setting from
OP-PSO is run 10 times and each run contains 30 iterations. The average of
total profit over the 10 runs is returned as the fitness value of the particle.
Since OP-PSO runs on 5 different datasets, 5 different parameter settings
are returned, which can be seen in Table 4.1.

In order to select a setting among the five evolved settings, each set-
tings is further tested on all the five datasets. After that, on each dataset,
the settings are sorted according to the profit obtained on the dataset,
which means that a setting can be assigned a rank from 1 to 5. The smaller
the rank, the better the corresponding setting. The average (“Average”)
and standard deviations (“StD”) of the five settings on five datasets are
shown in Table 4.2. As can be seen from the table, “S5” has the best (low-

4.4. EXPERIMENTS ON KNAPSACK 111

Table 4.2: Ranks of parameter settings on the five datasets.

Setting Average StD

S1 1.4 1.74
S2 3.4 0.49
S3 1.8 1.33
S4 2.2 1.17
S5 1.2 0.75

Table 4.3: Parameter settings of PSO algorithms.

Algorithm Setting

Up BPSO
w = 1.0; w = 0.4; c1 = c2 = 2.0

vmax = 6.0, vmin = -6.0
Static SBPSO is = 0.1154; ip = ig = 0.4423; ustkS = 40

Dynamic SBPSO
ip = ig = 0.5 ∗ (1− is)
iUs = 0.1154; iLs = 0.05

ustkSU = 40; ustkSL = 5

est) average ranking with a low standard deviation. Although “S1” and
“S4” have quite good average rankings, their standard deviations are high
illustrating they are less stable than “S5”. Therefore, “S5” is chosen as the
parameter setting for SBPSO algorithms. Notice that the optimal α is 1,
which means the assumption ip = ig in the previous section is accurate.

The parameters of Up BPSO are set according to the original paper
[97]. The parameter settings of PSO-based algorithms are given in Table
4.3. In binary DE, the crossover rate and scale factor are set as 0.25 and 1.0,
respectively [204]. In GAs, the mutation rate is 1/n, where n is the number
of bits in each individual. The crossover probability is 0.9 [214].

4.4 Experiments on Knapsack

4.4.1 PSO for Knapsack

On knapsack problems, the five algorithms are compared on 30 knapsack
datasets selected from 5 Knapsack instances [210] with different numbers
of items and resources. The four instances Weish (10-30), Weing (7-8),

112 CHAPTER 4. NOVEL BPSO FOR FS

Sento (1-2), Pet (7) are from the SAC-94 Knapsack library with n rang-
ing from 10 to 105 and m ranging from 2 to 30. The second instance was
provided by Glover and Kochenberger [215], named as “Gk”, which have
larger n (from 100 to 150) and m (from 15 to 50) than SAC-94. For each
dataset, each algorithm is run 50 independent times, and each run con-
tains 3000 iterations. The swarm size is equal to the number of items as in
[97].

In terms of representation, each position entry corresponds to one item,
which means that a particle’s length is the total number of items. In the
five algorithms, the position entry is 1 or 0, which shows that the cor-
responding item is selected or discarded. A penalty function strategy is
used to transform the problem’s binary constraint into a fitness function
as below:

fitnessKS =
n∑
d=1

pd × xd + β ×
m∑
j=1

min(Cj −
n∑
d=1

rdj × xd, 0) (4.10)

where β is used to penalize any infeasible candidate solution. β is set to
106, which is large enough to ensure that the final item subset is feasible.
The aim of PSO is to maximize the fitness function given in Eq. (4.10).

4.4.2 Profits

Table 4.4 shows the average and standard deviation of the results of five
algorithms on 30 knapsack datasets, where the number of items (n) ranges
from 50 to 150 items and the number of resources (m) varies from 2 to
50. “Opt” represents either the optimal or the best known profit on each
dataset. “Hit Rate” shows how many times an algorithm evolves a solu-
tion with the same profit as the optimal or best known solution. “Average
(Std)” are the averages and standard deviations of profits obtained by each
algorithm in the 50 independent runs. On each dataset, the best (highest)
hit rate and average profit are marked with bold letters. The results are
presented by a Win/Draw/Lost (W/D/L) ratio, which are the number of

4.4. EXPERIMENTS ON KNAPSACK 113
Ta

bl
e

4.
4:

Ex
pe

ri
m

en
ta

lr
es

ul
ts

on
kn

ap
sa

ck
.

D
at

as
et

m
n

O
pt

H
it

R
at

e
A

ve
ra

ge
(S

td
)

G
A

s
D

E
U

p
St

at
D

yn
G

A
s

D
E

U
p

St
at

D
yn

G
k0

1
15

10
0

3.
77

E3
0

0
0

0
0

3.
58

E3
(2

.4
E1

)
3.

69
E3

(9
.6

E0
)

3.
71

E3
(1

.1
E1

)
3.

72
E3

(1
.2

E1
)

3.
73

E3
(9

.6
E0

)
G

k0
2

25
10

0
3.

96
E3

0
0

0
0

0
3.

77
E3

(1
.9

E1
)

3.
88

E3
(9

.3
E0

)
3.

90
E3

(1
.2

E1
)

3.
91

E3
(1

.3
E1

)
3.

92
E3

(1
.1

E1
)

G
k0

3
25

15
0

5.
66

E3
0

0
0

0
0

5.
42

E3
(1

.9
E1

)
5.

52
E3

(1
.3

E1
)

5.
56

E3
(1

.5
E1

)
5.

56
E3

(1
.3

E1
)

5.
59

E3
(1

.2
E1

)
G

k0
4

50
15

0
5.

73
E3

0
0

0
0

1
5.

55
E3

(1
.8

E1
)

5.
64

E3
(1

.1
E1

)
5.

67
E3

(1
.3

E1
)

5.
67

E3
(1

.4
E1

)
5.

69
E3

(1
.5

E1
)

Pe
t7

5
50

1.
65

E4
0

31
7

3
3

1.
56

E4
(3

.3
E2

)
1.

65
E4

(9
.0

E0
)

1.
65

E4
(3

.9
E1

)
1.

64
E4

(7
.0

E1
)

1.
65

E4
(4

.4
E1

)
Se

nt
o1

30
60

7.
77

E3
0

33
10

17
23

4.
68

E3
(8

.5
E2

)
7.

77
E3

(8
.0

E0
)

7.
74

E3
(2

.9
E1

)
7.

74
E3

(3
.6

E1
)

7.
75

E3
(3

.0
E1

)
Se

nt
o2

30
60

8.
72

E3
0

14
2

1
3

7.
67

E3
(4

.2
E2

)
8.

72
E3

(5
.3

E0
)

8.
70

E3
(1

.7
E1

)
8.

71
E3

(1
.2

E1
)

8.
71

E3
(1

.2
E1

)
W

ei
ng

7
2

10
5

1.
10

E6
0

1
0

0
3

1.
02

E6
(2

.1
E4

)
1.

09
E6

(6
.0

E2
)

1.
09

E6
(1

.4
E3

)
1.

10
E6

(4
.7

E2
)

1.
10

E6
(3

.4
E2

)
W

ei
ng

8
2

10
5

6.
24

E5
0

0
1

3
2

2.
53

E5
(6

.0
E4

)
6.

15
E5

(6
.7

E3
)

6.
19

E5
(4

.7
E3

)
6.

20
E5

(1
.3

E3
)

6.
20

E5
(1

.1
E3

)
W

ei
sh

10
5

50
6.

34
E3

0
47

32
38

42
4.

67
E3

(6
.5

E2
)

6.
34

E3
(4

.2
E0

)
6.

33
E3

(1
.9

E1
)

6.
33

E3
(1

.7
E1

)
6.

33
E3

(1
.6

E1
)

W
ei

sh
11

5
50

5.
64

E3
0

48
16

16
20

3.
64

E3
(7

.7
E2

)
5.

64
E3

(7
.8

E-
1)

5.
62

E3
(3

.4
E1

)
5.

60
E3

(4
.7

E1
)

5.
62

E3
(3

.9
E1

)
W

ei
sh

12
5

50
6.

34
E3

0
50

36
46

46
4.

49
E3

(6
.8

E2
)

6.
34

E3
(0

.0
E0

)
6.

33
E3

(1
.8

E1
)

6.
34

E3
(2

.7
E-

1)
6.

34
E3

(9
.9

E0
)

W
ei

sh
13

5
50

6.
16

E3
0

50
44

48
46

4.
13

E3
(6

.9
E2

)
6.

16
E3

(0
.0

E0
)

6.
15

E3
(2

.5
E1

)
6.

16
E3

(1
.5

E1
)

6.
15

E3
(2

.3
E1

)
W

ei
sh

14
5

60
6.

95
E3

0
50

37
40

40
4.

71
E3

(6
.1

E2
)

6.
95

E3
(0

.0
E0

)
6.

94
E3

(2
.4

E1
)

6.
95

E3
(1

.2
E1

)
6.

95
E3

(2
.0

E1
)

W
ei

sh
15

5
60

7.
49

E3
0

50
29

48
49

4.
89

E3
(5

.8
E2

)
7.

49
E3

(0
.0

E0
)

7.
47

E3
(2

.4
E1

)
7.

48
E3

(7
.5

E0
)

7.
49

E3
(4

.5
E0

)
W

ei
sh

16
5

60
7.

29
E3

0
40

16
17

25
5.

05
E3

(6
.1

E2
)

7.
29

E3
(7

.4
E-

1)
7.

28
E3

(1
.1

E1
)

7.
28

E3
(2

.6
E1

)
7.

28
E3

(1
.9

E1
)

W
ei

sh
17

5
60

8.
63

E3
0

49
27

34
38

7.
79

E3
(3

.1
E2

)
8.

63
E3

(2
.0

E0
)

8.
63

E3
(6

.8
E0

)
8.

63
E3

(5
.1

E0
)

8.
63

E3
(5

.0
E0

)
W

ei
sh

18
5

70
9.

58
E3

0
43

13
16

18
7.

94
E3

(4
.4

E2
)

9.
58

E3
(2

.4
E0

)
9.

56
E3

(1
.5

E1
)

9.
57

E3
(1

.2
E1

)
9.

57
E3

(9
.7

E0
)

W
ei

sh
19

5
70

7.
70

E3
0

47
21

28
32

5.
14

E3
(6

.6
E2

)
7.

70
E3

(3
.1

E0
)

7.
67

E3
(3

.4
E1

)
7.

69
E3

(1
.1

E1
)

7.
69

E3
(8

.8
E0

)
W

ei
sh

20
5

70
9.

45
E3

0
44

22
45

37
7.

18
E3

(5
.9

E2
)

9.
45

E3
(1

.9
E0

)
9.

44
E3

(1
.8

E1
)

9.
45

E3
(7

.3
E0

)
9.

45
E3

(7
.7

E0
)

W
ei

sh
21

5
70

9.
07

E3
0

46
24

28
34

6.
65

E3
(5

.8
E2

)
9.

07
E3

(8
.2

E0
)

9.
06

E3
(2

.0
E1

)
9.

06
E3

(2
.2

E1
)

9.
06

E3
(2

.2
E1

)
W

ei
sh

22
5

80
8.

95
E3

0
20

11
18

15
6.

31
E3

(6
.6

E2
)

8.
93

E3
(1

.4
E1

)
8.

91
E3

(3
.4

E1
)

8.
92

E3
(2

.6
E1

)
8.

92
E3

(2
.7

E1
)

W
ei

sh
23

5
80

8.
34

E3
0

26
7

11
12

5.
59

E3
(6

.6
E2

)
8.

34
E3

(2
.0

E1
)

8.
31

E3
(3

.6
E1

)
8.

33
E3

(2
.5

E1
)

8.
33

E3
(1

.8
E1

)
W

ei
sh

24
5

80
1.

02
E4

0
31

11
29

26
8.

54
E3

(5
.2

E2
)

1.
02

E4
(1

.1
E1

)
1.

02
E4

(2
.3

E1
)

1.
02

E4
(1

.6
E1

)
1.

02
E4

(1
.3

E1
)

W
ei

sh
25

5
80

9.
94

E3
0

25
7

13
11

7.
72

E3
(5

.8
E2

)
9.

93
E3

(8
.9

E0
)

9.
92

E3
(1

.6
E1

)
9.

92
E3

(1
.1

E1
)

9.
92

E3
(9

.6
E0

)
W

ei
sh

26
5

90
9.

58
E3

0
15

5
9

27
6.

45
E3

(7
.9

E2
)

9.
56

E3
(2

.1
E1

)
9.

54
E3

(2
.2

E1
)

9.
56

E3
(1

.8
E1

)
9.

57
E3

(2
.0

E1
)

W
ei

sh
27

5
90

9.
82

E3
0

35
27

46
44

6.
72

E3
(6

.4
E2

)
9.

81
E3

(1
.7

E1
)

9.
80

E3
(4

.5
E1

)
9.

81
E3

(3
.6

E1
)

9.
81

E3
(3

.1
E1

)
W

ei
sh

28
5

90
9.

49
E3

0
34

23
35

31
6.

55
E3

(6
.7

E2
)

9.
48

E3
(2

.3
E1

)
9.

46
E3

(3
.6

E1
)

9.
48

E3
(1

.8
E1

)
9.

48
E3

(2
.3

E1
)

W
ei

sh
29

5
90

9.
41

E3
0

23
12

24
26

6.
29

E3
(8

.1
E2

)
9.

38
E3

(5
.2

E1
)

9.
36

E3
(4

.1
E1

)
9.

38
E3

(3
.6

E1
)

9.
39

E3
(3

.1
E1

)
W

ei
sh

30
5

90
1.

12
E4

0
22

12
22

26
8.

90
E3

(5
.9

E2
)

1.
12

E4
(1

.5
E1

)
1.

12
E4

(1
.8

E1
)

1.
12

E4
(1

.2
E1

)
1.

12
E4

(1
.2

E1
)

114 CHAPTER 4. NOVEL BPSO FOR FS

Table 4.5: W/D/L on knapsack.

Algorithm GAs DE Up Stat

Stat 30/0/0 5/10/15 17/12/1
Dyn 30/0/0 6/10/14 21/8/1 7/23/0

times that an algorithm is significantly better, similar or worse than the
other. Table 4.5 shows the comparisons between SBPSO algorithms and
other algorithms in terms of W/D/L ratio.

As seen from Table 4.4, on all the datasets, both static and dynamic
SBPSO obtain solutions with higher average profit than GAs. In com-
parison with Up BPSO, on most datasets (29 out of the 30 datasets), the
static SBPSO algorithm achieves similar or better average profit. Static
SBPSO also has higher hit rates on most of the 30 datasets. For example
on Weish27, Static SBPSO’s hit rate is almost two times higher than that
of Up BPSO. According to the significance test results given in Table 4.5,
static SBPSO is significantly better than Up BPSO on 17 datasets while
achieving similar profits on 12 datasets. The results show that applying
the stickiness property as BPSO’s momentum, SBPSO can better explore
the search space to evolve item subsets with higher profits than Up BPSO.

Similar to static SBPSO, dynamic SBPSO also achieves similar or bet-
ter performance than Up BPSO on 29 out of the 30 datasets. According
to Table 4.5, dynamic SBPSO is significantly better than Up BPSO on 21
datasets while being worse than Up BPSO on only one dataset. In com-
parison with static SBPSO, dynamic SBPSO achieves significantly higher
profits on seven datasets, which contain a large number of items, such as
the four Gk datasets. On most datasets, dynamic SBPSO has a smaller
standard deviation than static SBPSO, which shows that dynamic SBPSO
is also more stable.

As can be seen from Table 4.4, on the datasets with less than 80 items,
DE outperforms all the other algorithms with higher profits and hit rates.
However, when the number of items is increased, dynamic SBPSO achieves
significantly higher profits than binary DE. Especially, on the four Gk datasets,

4.4. EXPERIMENTS ON KNAPSACK 115

0 500 1000 1500 2000 2500 3000

60
00

65
00

70
00

75
00

80
00

85
00

Sento2

Iterations

DE
Up
Stat
Dyn

0 500 1000 1500 2000 2500 3000

0
20

00
40

00
60

00
80

00
10

00
0

Weish30

Iterations

DE
Up
Stat
Dyn

0 500 1000 1500 2000 2500 3000

35
50

36
00

36
50

37
00

Gk01

Iterations

DE
Up
Stat
Dyn

0 500 1000 1500 2000 2500 3000

37
50

38
00

38
50

39
00

Gk02

Iterations

DE
Up
Stat
Dyn

0 500 1000 1500 2000 2500 3000

53
50

54
00

54
50

55
00

55
50

Gk03

Iterations

DE
Up
Stat
Dyn

0 500 1000 1500 2000 2500 3000

55
00

55
50

56
00

56
50

57
00

Gk04

Iterations

DE
Up
Stat
Dyn

Figure 4.2: Evolutionary process of the four algorithms on 3000 iterations.

dynamic SBPSO outperforms all the other algorithms. On Gk04, the most
difficult dataset, only dynamic SBPSO can achieve an optimal profit.

4.4.3 Evolutionary Processes

In order to examine the search ability of the five algorithms, their evolu-
tionary processes are recorded. The evolutionary process is obtained by
averaging the best fitness value achieved by the whole population in each
iteration over the 50 independent runs. For example, if each run contains
400 iterations, the evolutionary process consists of 400 average values. To
clearly show the difference between the other four algorithms, the evolu-
tionary process of GA is not shown since GA’s profit is much lower than
the other algorithms. The evolutionary processes of the four methods are
shown in Fig. 4.2.

As can be seen in Fig. 4.2, the static SBPSO algorithm is consistently su-
perior to Up BPSO even in the last 600 iterations. Although binary DE is
significantly better than the two SBPSO algorithms on the Sento2 dataset,
the difference between them is very small. Meanwhile, on the Gk datasets,

116 CHAPTER 4. NOVEL BPSO FOR FS

where the dynamic SBPSO algorithm outperforms binary DE, and the dif-
ference between the two algorithms can be seen clearly during their evo-
lutionary process.

The principle of SBPSO is to explore the search space firstly. Once it
finds a promising region, it will try to exploit that region for a while be-
fore continue exploring other regions. In SBPSO, the exploration and ex-
ploitation are performed alternately. On the other hand, Up BPSO aims to
explore the search space first to find promising areas before focusing on
exploitation in the later iterations. Probably because of doing exploitation
earlier than Up BPSO, both SBPSO algorithms achieve better profit than
Up BPSO in the first 2000 iterations. After that, Up BPSO starts exploiting
the discovered promising areas, which leads to a significant jump in the
last 1000 iterations. On the other hand, by alternatively performing explo-
ration and exploitation, the performance of SBPSO algorithms is steadily
improved. Finally, at the end, the SBPSO algorithms outperform Up BPSO.

4.4.4 Evolutionary Processes with 6000 Iterations

On the four Gk datasets, after 3000 iterations, Up BPSO still has a tendency
to further improve the solutions. Therefore, we perform another set of ex-
periments, in which each algorithm is run another 50 independent times
and each run contains 6000 iterations, which is roughly two times longer
than the previous experiments. The evolutionary process on 6000 itera-
tions can be seen in Fig. 4.3. It can be seen that even when the number of
iterations is increased, the Up BPSO algorithm still has the same pattern as
it is run for 3000 iterations. The reason is that the parameters of Up BPSO
linearly change with respect to the number of iterations, which means that
in the first 70% iterations, Up BPSO still performs exploration to search for
promising areas. Only in the last 30% iterations, Up BPSO can significantly
improve its solutions, but they are not as good as the solutions evolved by
the SBPSO algorithms.

4.4. EXPERIMENTS ON KNAPSACK 117

0 1000 2000 3000 4000 5000 6000

35
50

36
00

36
50

37
00

Gk01

Iterations

DE
Up
Stat
Dyn

0 1000 2000 3000 4000 5000 6000

37
50

38
00

38
50

39
00

Gk02

Iterations

DE
Up
Stat
Dyn

0 1000 2000 3000 4000 5000 600053
50

54
00

54
50

55
00

55
50

56
00

Gk03

Iterations

DE
Up
Stat
Dyn

0 1000 2000 3000 4000 5000 6000

55
00

55
50

56
00

56
50

57
00

Gk04

Iterations

DE
Up
Stat
Dyn

Figure 4.3: Evolutionary process of the four algorithms on 6000 iterations.

4.4.5 Effect of Dynamic Strategy

To analyze the effect of dynamic strategy, we compare static with dynamic
SBPSO. Dynamic SBPSO starts with the smallest ustkS and the largest
value of is in order to have a larger flipping probability than static SBPSO.
Therefore, in the beginning, static SBPSO explores less and spends more
time on exploitation than dynamic SBPSO. On large datasets like the Gk
datasets, in the first half of the evolutionary process, the candidate solu-
tions evolved by dynamic SBPSO are not as good as that of static SBPSO.
However, in the following iterations, when the search phase moves to ex-
ploit the promising areas, dynamic SBPSO shows its good exploitation
ability to search for superior solutions and leaves static SBPSO behind.

The experimental results show that the stickiness property helps the
particles to move around the search space in a more meaningful way and
allows the swarm to do exploration and exploitation alternatively. This
searching behavior results in better performance than doing exploration
and exploitation sequentially as in Up BPSO. In addition, the dynamic
strategy assists SBPSO to focus more on exploration at the beginning and

118 CHAPTER 4. NOVEL BPSO FOR FS

Table 4.6: Computational time (in seconds) on knapsack.

Dataset GAs DE Up Stat Dyn

Gk01 1.87 12.75 4.24 2.04 2.20
Gk02 2.26 13.04 4.55 2.29 2.44
Gk03 3.75 29.52 10.10 4.84 5.38
Gk04 5.81 30.89 11.69 5.95 6.23
Pet7 0.76 2.98 1.08 0.55 0.73
Sento1 0.97 4.36 1.88 1.11 1.15
Sento2 0.92 4.57 1.89 1.09 1.03
Weing7 1.02 13.07 5.24 1.86 2.63
Weing8 0.98 12.97 3.97 2.21 1.83
Weish10 0.55 2.75 1.06 0.50 0.55
Weish11 0.58 2.73 1.06 0.50 0.55
Weish12 0.54 2.78 1.06 0.67 0.53
Weish13 0.60 2.77 1.16 0.52 0.55
Weish14 0.68 4.16 1.51 0.68 0.74
Weish15 0.67 4.27 2.19 0.69 0.74

Dataset GAs DE Up Stat Dyn

Weish16 0.62 4.21 1.52 0.68 0.77
Weish17 0.55 4.04 1.59 0.71 0.94
Weish18 0.76 6.06 2.98 1.18 1.01
Weish19 0.70 5.80 2.14 0.94 0.97
Weish20 0.71 6.00 2.98 1.11 1.03
Weish21 0.75 5.94 1.95 0.90 1.02
Weish22 0.84 7.87 2.60 1.47 1.32
Weish23 0.84 7.65 2.60 1.47 1.29
Weish24 0.84 7.99 3.79 1.16 1.26
Weish25 0.79 7.89 2.78 1.18 1.24
Weish26 1.04 9.90 3.46 1.43 1.87
Weish27 1.09 9.87 4.61 2.16 1.54
Weish28 1.00 9.74 3.46 1.43 1.98
Weish29 0.99 9.84 3.15 1.42 1.85
Weish30 0.88 10.19 5.11 1.87 2.00

steadily exploit more at the end. Therefore, dynamic SBPSO outperforms
both static SBPSO and Up BPSO.

4.4.6 Computational Time

The computational times of the five algorithms are shown in Table 4.6. In
the table, the shortest computational time on each dataset is marked in
bold. As can be seen from the table, on most of the datasets, GAs is the
most efficient algorithm however its performance is not as good as other
algorithms. Although DE has a good performance on datasets with small
numbers of items, its computational cost is the most expensive. Static
SBPSO is the second most efficient algorithm on 29 out of the 30 datasets.
In comparison with static SBPSO, Up BPSO usually needs at least a dou-
ble computational time due to updating parameters and the exponential
calculation. Dynamic SBPSO is slightly more expensive than static SBPSO
since it needs to perform an extra step to update the parameters, but it
is more efficient than Up BPSO. Among the five algorithms, SBPSO algo-
rithms have the best trade-off between efficiency and effectiveness.

4.5. EXPERIMENTS ON FEATURE SELECTION 119

4.5 Experiments on Feature Selection

4.5.1 PSO for Feature Selection

The five algorithms are compared on 12 feature selections datasets chosen
from the UCI machine learning repository [32]. The datasets are different
in the numbers of features, classes, and instances, which can be seen in Ta-
ble 1.1. In the previous chapter, the proposed algorithm is a filter approach
which has a low computational cost, so 10-fold cross validation is applied.
However, this chapter and the following chapters focus on wrapper-based
methods which are usually more expensive than a filter approach. There-
fore, from this chapter, we use a strategy to split the dataset into training
and test sets, so that they contain 70% and 30% instances, respectively, and
the class distribution is roughly preserved. More importantly, since the
datasets in this thesis do not have limited numbers of instances, it is not
that necessary to apply 10-fold cross validation which is usually applied
when the number of instances is small. For each dataset, each algorithm
is run 50 independent times, and each run contains 400 iterations. The
swarm size is set to the number of features and it is bounded by 100.

The representation of the PSO algorithms for feature selection is the
same as the representation for knapsack, in which each position corre-
sponds to one original feature and indicates whether the feature is selected
or not.

In feature selection, there are two main objectives, which are to max-
imize the classification performance and to minimize the number of se-
lected features. The two objectives can be combined to form a fitness func-
tion as below:

fitnessFS = γ × ErrorRate+ (1− γ)× #selected

#all
(4.11)

where ErrorRate is the classification error of the selected features, #selected
and #all represent the number of selected features and the total number
of original features, respectively. γ is used to control the contribution of

120 CHAPTER 4. NOVEL BPSO FOR FS

the two objectives. Since the classification performance is preferred over
the number of selected features, γ is usually set to 0.9. The task is to find
a feature subset to minimize the fitness function given in Eq. (4.11). In
this chapter and the following chapters that are wrapper-based feature se-
lection approaches, KNN is used to calculate the classification error. The
reason for selecting KNN is that it is one of the simplest classification al-
gorithms. There is a study conducted by Xue et al. [214] showing that
if a wrapper approach uses a simple classification algorithm, the selected
features are more generalized than using more complicated classification
algorithm. The other reason is KNN itself cannot perform feature selection
or feature weighting. Some different well-known classification algorithms
such as DT, SVM have a feature selection process embedded, which makes
it more difficult to judge which feature selection approach is better. An-
other reason is that KNN relies on distance measures, so it is more harmful
by the “curse of dimensionality”. In this chapter,Kis set as 5 to ensure that
KNN can avoid noisy data while still maintaining its efficiency [214].

In this section, the five algorithms are compared on 12 feature selec-
tion problems, which have different numbers of features, classes, and in-
stances.

4.5.2 Feature Subsets

The comparisons are performed on three terms: training accuracy, testing
accuracy and the number of selected features, which are shown in Table
4.7. Tables 4.8 and 4.9 show the classification accuracies on training and
test sets, respectively. In the tables, “All” means that all features are used
in the classification process. The bold numbers/accuracies indicate that
the corresponding algorithms achieve the highest performance. The small-
est number of features is marked in bold. The static and dynamic SBPSO
algorithms are compared with other algorithms using Wilcoxon test with
a confidence interval of 0.95.

4.5. EXPERIMENTS ON FEATURE SELECTION 121

Ta
bl

e
4.

7:
W

/D
/L

on
fe

at
ur

e
se

le
ct

io
n.

M
et

ho
d

G
A

s
D

E
U

p
St

at

St
at

9/
1/

2
3/

6/
3

0/
8/

4
D

yn
8/

2/
2

4/
7/

3
4/

6/
2

5/
7/

0

(a
)T

ra
in

in
g

A
cc

ur
ac

y

M
et

ho
d

G
A

s
D

E
U

p
St

at

St
at

7/
3/

2
5/

6/
1

1/
10

/1
D

yn
8/

3/
1

7/
4/

1
5/

6/
1

3/
9/

0

(b
)T

es
ti

ng
A

cc
ur

ac
y

M
et

ho
d

G
A

s
D

E
U

p
St

at

St
at

8/
2/

2
8/

3/
1

2/
10

/0
D

yn
10

/2
/0

7/
1/

4
6/

5/
1

4/
7/

1

(c
)N

um
be

r
of

Fe
at

ur
es

Ta
bl

e
4.

8:
Tr

ai
ni

ng
re

su
lt

s
on

fe
at

ur
e

se
le

ct
io

n.

D
at

as
et

N
um

be
r

of
Fe

at
ur

es
Tr

ai
ni

ng
A

cc
ur

ac
ie

s
A

ll
G

A
s

D
E

U
p

St
at

D
yn

A
ll

G
A

s
D

E
U

p
St

at
D

yn

W
in

e
13

.0
3.

6
3.

7
4.

0
3.

4
3.

3
88

.1
7(

0.
00

)
96

.2
2(

0.
44

)
96

.5
9(

0.
27

)
96

.7
7(

0.
00

)
96

.4
2(

0.
27

)
96

.3
8(

0.
30

)
A

us
tr

al
ia

n
14

.0
2.

7
2.

9
3.

0
2.

7
2.

8
75

.7
8(

0.
00

)
82

.4
0(

7.
42

)
86

.0
6(

4.
01

)
86

.5
5(

2.
84

)
80

.4
7(

9.
46

)
83

.7
1(

7.
44

)
Ve

hi
cl

e
18

.0
4.

8
5.

0
5.

0
4.

9
4.

8
88

.5
1(

0.
00

)
89

.4
1(

0.
73

)
89

.7
1(

0.
50

)
89

.5
1(

0.
43

)
89

.7
4(

0.
78

)
89

.6
9(

0.
82

)
G

er
m

an
24

.0
6.

8
5.

2
5.

3
5.

5
5.

4
80

.1
4(

0.
00

)
80

.1
1(

2.
13

)
79

.2
6(

0.
65

)
78

.8
7(

1.
16

)
78

.9
1(

1.
96

)
78

.5
9(

2.
01

)
W

BC
D

30
.0

2.
4

2.
0

2.
0

2.
0

2.
0

94
.9

7(
0.

00
)

95
.5

5(
0.

75
)

95
.2

3(
0.

00
)

95
.2

3(
0.

00
)

95
.1

7(
0.

24
)

95
.1

9(
0.

20
)

Io
no

sp
he

re
34

.0
6.

0
3.

0
3.

2
3.

6
3.

5
85

.7
7(

0.
00

)
92

.7
5(

1.
20

)
94

.2
9(

0.
17

)
94

.2
2(

0.
36

)
94

.1
4(

0.
51

)
94

.3
0(

0.
38

)
So

na
r

60
.0

14
.3

14
.7

13
.6

13
.1

12
.9

83
.4

5(
0.

00
)

90
.2

3(
1.

98
)

92
.5

5(
1.

34
)

92
.5

6(
1.

24
)

91
.4

5(
1.

81
)

91
.8

9(
1.

62
)

H
ill

va
lle

y
10

0.
0

29
.2

22
.8

24
.1

23
.9

22
.7

71
.4

6(
0.

00
)

73
.8

9(
1.

19
)

74
.9

1(
0.

97
)

74
.8

4(
0.

92
)

74
.6

2(
1.

07
)

74
.7

6(
1.

09
)

M
us

k1
16

6.
0

57
.1

64
.0

60
.7

58
.6

50
.9

92
.1

9(
0.

00
)

94
.2

7(
1.

03
)

95
.2

9(
0.

64
)

95
.5

7(
0.

64
)

95
.2

5(
0.

78
)

95
.9

1(
0.

60
)

A
rr

hy
th

m
ia

27
8.

0
65

.2
65

.0
38

.8
46

.1
26

.3
94

.3
5(

0.
00

)
95

.2
3(

0.
19

)
95

.6
0(

0.
2)

96
.0

3(
0.

24
)

96
.0

6(
0.

21
)

96
.3

8(
0.

17
)

M
ad

el
on

50
0.

0
19

8.
9

20
1.

7
18

8.
5

18
4.

5
17

1.
8

83
.2

4(
0.

00
)

87
.7

0(
0.

78
)

89
.1

7(
0.

57
)

90
.3

9(
0.

66
)

90
.2

3(
0.

65
)

91
.2

3(
0.

51
)

M
ul

ti
pl

e
Fe

at
ur

es
64

9.
0

17
4.

0
18

8.
4

10
7.

0
13

0.
9

76
.4

99
.3

3(
0.

00
)

99
.5

0(
0.

04
)

99
.5

3(
0.

04
)

99
.5

7(
0.

05
)

99
.5

7(
0.

06
)

99
.6

1(
0.

04
)

122 CHAPTER 4. NOVEL BPSO FOR FS

Table 4.9: Testing results on feature selection.

Dataset
Testing Accuracies

All GAs DE Up Stat Dyn

Wine 76.54(0.00) 96.94(3.04) 97.21(2.03) 96.30(0.00) 98.30(2.37) 98.15(2.89)
Australian 70.05(0.00) 81.42(7.83) 84.64(3.98) 85.10(2.84) 79.02(9.46) 82.26(7.44)
Vehicle 84.06(0.00) 84.03(0.98) 83.70(0.27) 83.81(0.26) 83.72(0.57) 83.78(0.57)
German 68.00(0.00) 68.23(2.01) 68.75(0.99) 68.92(1.30) 69.31(2.06) 69.32(1.56)
WBCD 92.98(0.00) 93.83(0.97) 94.74(0.00) 94.74(0.00) 94.60(0.56) 94.65(0.46)
Ionosphere 83.81(0.00) 88.76(2.16) 85.73(0.13) 86.51(1.52) 87.25(2.19) 86.59(1.65)
Sonar 76.19(0.00) 77.91(3.11) 80.83(3.30) 79.71(2.95) 79.37(3.74) 79.71(3.35)
Hillvalley 56.59(0.00) 58.24(1.38) 58.32(1.53) 58.47(1.16) 58.55(1.70) 59.02(1.48)
Musk1 83.92(0.00) 85.44(2.70) 85.96(2.03) 86.32(1.94) 85.47(2.31) 86.00(2.23)
Arrhythmia 93.78(0.00) 94.38(0.33) 94.74(0.28) 95.09(0.36) 95.09(0.34) 95.26(0.39)
Madelon 70.90(0.00) 78.35(1.24) 80.01(1.31) 81.11(1.23) 80.79(1.33) 81.95(1.31)
Multiple Features 98.57(0.00) 98.96(0.13) 98.99(0.09) 99.03(0.11) 99.05(0.11) 99.07(0.08)

As can be seen from Tables 4.8 and 4.9, on most of the datasets, the
two SBPSO algorithms can successfully evolve small feature subsets with
similar or better classification accuracy than using all features. For exam-
ple on Arrhythmia, static and dynamic SBPSO select less than 16% of the
original features while achieving almost 2% higher accuracy than using all
features.

In terms of training accuracy, on most of the datasets, static and dy-
namic SBPSO achieve higher training accuracy than GAs. As can be seen
in Table 4.7(a), the SBPSO algorithms are significantly better than GAs on
at least nine out of the 12 datasets. In comparison with DE, the SBPSO al-
gorithms achieve similar or better performance on 11 datasets. Although
static SBPSO outperforms Up BPSO on only one dataset, dynamic SBPSO
is significantly better than Up BPSO on five datasets. On the four largest
datasets, dynamic SBPSO can evolve the best feature subsets in compari-
son with all the other algorithms.

As can be seen in Table 4.7(b), in terms of testing accuracy, static SBPSO
is significantly better than GAs, DE and Up on seven, five and one datasets,
respectively. Meanwhile, except for being worse than GAs on 2 datasets,
static SBPSO is worse than the other two algorithms on only 1 dataset. On

4.5. EXPERIMENTS ON FEATURE SELECTION 123

all datasets, dynamic SBPSO is always similar or better than static SBPSO.
In comparison with other non-SBPSO algorithms, dynamic SBPSO is sig-
nificantly better on at least five datasets while being worse on only one
dataset. On the three largest datasets, dynamic SBPSO achieves the best
training and testing accuracies. This pattern shows that dynamic SBPSO
is able to select feature subsets, which are consistently good for training
and test sets.

Beside classification accuracies, the number of selected features is also
an important objective. As can be seen in Table 4.8, on eight out of the
12 datasets, dynamic SBPSO selects the smallest number of features. For
example, on the largest dataset, Multiple Features, dynamic SBPSO selects
on average only 76.4 features, which is 30 features less than the second
smallest number of features selected by Up BPSO. The significance test
results in Table 4.7(c) show that in terms of the number of selected features,
dynamic SBPSO selects more features than other algorithms on at most
four out of the 12 datasets.

In general, on 10 out of the 12 datasets, dynamic SBPSO can achieve
the highest classification accuracy or the smallest number of selected fea-
tures, which are the two main objectives of feature selection. However,
since both objectives contribute to the fitness function, analyzing them
separately cannot show the performance of the algorithms. Therefore, the
evolutionary process will be analyzed in the next section.

4.5.3 Evolutionary Processes

In order to analyze the evolutionary process, the best fitness value of each
iteration is recorded. Since each algorithm is run 50 independent times, the
average of 50 best fitness values in each iteration from the 50 runs is used
to show the evolutionary process. Therefore, for each algorithm, there
will be 400 average fitness values corresponding to the 400 iterations. The
400 average values are used to draw an algorithm’s evolutionary process,

124 CHAPTER 4. NOVEL BPSO FOR FS

which is shown in Fig. 4.4. Remember that in feature selection, the target
is to minimize the fitness function so the lower the fitness value, the better
the algorithm. In the figure, only 8 evolutionary processes are shown,
since the processes are similar on the other datasets.

As shown in the figure, on the first eight datasets (Wine-Sonar) with
small numbers of features, although in the first 100 iterations, the SBPSO
algorithms evolve better fitness values, Up BPSO and binary DE still can
achieve lower fitness values than the SBPSO algorithms at the end of the
evolutionary process. However, except for the German dataset, on the
other seven datasets, the differences between the algorithms are not sig-
nificant.

When the number of features is increased, the final solution of dynamic
SBPSO achieves the lowest fitness values. Binary DE does not perform
well on the datasets with a large number of features, where its fitness value
is worse than that of the SBPSO algorithms during the whole evolutionary
process. Similar to the knapsack problem, Up BPSO significantly improves
its fitness value only in the last 100 iterations, when probably it focuses
on exploitation. Among the two SBPSO algorithms, static SBPSO usually
generates better solutions in the first half of a run. Since at the beginning
dynamic SBPSO focuses on exploration more than static SBPSO, it tends
to discover more promising regions rather than focusing on some spe-
cific regions. Therefore, in the second half when dynamic SBPSO focuses
more on exploitation, it can improve its fitness value over static SBPSO.
It can be seen that at the beginning dynamic SBPSO explores more than
static SBPSO and less than Up BPSO, while in the later iterations, dynamic
SBPSO increases its exploitation over static SBPSO.

4.5.4 Computational Time

Table 4.10 shows the computational times of the five algorithms. On each
dataset, the least computational time is marked in bold. As can be seen

4.5. EXPERIMENTS ON FEATURE SELECTION 125

0 100 200 300 400

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

Wine

Iterations

F
itn

es
s

GAs
DE
Up
Stat
Dyn

0 100 200 300 400
14

16
18

20
22

Australian

Iterations

F
itn

es
s

GAs
DE
Up
Stat
Dyn

0 100 200 300 400

16
.0

16
.5

17
.0

17
.5

18
.0

18
.5

Vehicle

Iterations

F
itn

es
s

GAs
DE
Up
Stat
Dyn

0 100 200 300 400

24
25

26
27

28
29

German

Iterations

F
itn

es
s

GAs
DE
Up
Stat
Dyn

0 100 200 300 400

6
7

8
9

WBCD

Iterations

F
itn

es
s

GAs
DE
Up
Stat
Dyn

0 100 200 300 400

6
8

10
12

14
16

Ionosphere

Iterations
F

itn
es

s

GAs
DE
Up
Stat
Dyn

0 100 200 300 400

10
12

14
16

18
20

22

Sonar

Iterations

F
itn

es
s

GAs
DE
Up
Stat
Dyn

0 100 200 300 400

36
38

40
42

Hillvalley

Iterations

F
itn

es
s

GAs
DE
Up
Stat
Dyn

0 100 200 300 400

8
10

12
14

16

Musk1

Iterations

F
itn

es
s

GAs
DE
Up
Stat
Dyn

0 100 200 300 400

5
6

7
8

9
10

Arrhythmia

Iterations

F
itn

es
s

GAs
DE
Up
Stat
Dyn

0 100 200 300 400

16
18

20
22

24
26

28

Madelon

Iterations

F
itn

es
s

GAs
DE
Up
Stat
Dyn

0 100 200 300 400

2
3

4
5

Multiple Features

Iterations

F
itn

es
s

GAs
DE
Up
Stat
Dyn

Figure 4.4: Evolutionary processes on feature selection.

126 CHAPTER 4. NOVEL BPSO FOR FS

Table 4.10: Computational time (in seconds) on feature selection.

Dataset GAs DE Up Stat Dyn

Wine 25.30 25.72 13.36 12.89 13.21
Australian 493.92 467.81 234.11 243.62 238.37
Vehicle 854.23 905.47 470.63 458.68 448.22
German 1675.08 1676.74 864.95 854.35 848.89
WBCD 641.35 636.09 321.34 307.54 310.33
Ionosphere 296.15 276.36 136.50 138.04 137.32
Sonar 169.73 170.90 87.83 83.22 84.28
Hillvalley 11725.56 11826.99 6489.73 5705.48 5961.86
Musk1 2137.65 2097.33 1134.12 1024.06 1038.67
Arrhythmia 1815.37 2039.85 1118.84 933.95 967.77
Madelon 96815.06 107603.77 56782.26 49948.55 52157.75
Multiple Features 52111.53 79564.87 33012.97 27977.13 26939.52

from the table, on 10 out of the 12 datasets, the SBPSO algorithms are the
most efficient algorithms. Specifically, static SBPSO has the lowest com-
putational time on seven datasets while dynamic SBPSO is the fastest one
on three datasets. Since in feature selection, the most time is consumed by
the fitness evaluation, which is directly related to the number of selected
features, DE is slower than the SBPSO algorithms due to its large number
of selected features. In comparison with Up BPSO, although static SBPSO
and Up BPSO select similar number of features, Up BSPSO is still slower
in most of the datasets because its updating equation contains exponential
calculation.

The results show that the dynamic strategy can balance between the ex-
ploitation and exploration better than the other three algorithms to achieve
good solutions on large and complicated search spaces.

4.5.5 Further Discussions

According to the experimental results, it can be seen that the SBPSO algo-
rithms can better explore the large search space by performing exploration
and exploitation alternatively. In order to further analyze the behavior
of the swarm, the idea of an evolutionary factor [216] is applied. Firstly,

4.5. EXPERIMENTS ON FEATURE SELECTION 127

the mean distance from each particle i to the other particles is calculated,
called di. The evolutionary factor f is calculated as follows:

f =
dg − dmin
dmax − dmin

∈ [0, 1] (4.12)

where dg is di of the globally best particle, dmin and dmax are the minimum
and maximum values of all di. Based on the evolutionary factor, a set of
fuzzy rules are applied to identify the corresponding evolutionary state.
In general, the population distribution and the fitness function are used to
estimate the real-time evolutionary state of a PSO-based algorithm. There
are four evolutionary states, which are exploration, exploitation, convergence
and jumping out. The evolutionary states of Up BPSO, static and dynamic
SBPSO, in one run on the Sonar dataset, are shown in Fig. 4.5. In the
figure, the horizontal axis represents the iterations and the vertical axis is
the evolutionary state. The values of exploration, exploitation, convergence
and jumping out are 1, 2, 3 and 4, respectively.

As can be seen from Fig. 4.5, in the first 200 iterations, Up BPSO per-
forms much more exploration than the two SBPSO algorithms. In the last
200 iterations, most of the time, Up BPSO is in exploitation and conver-
gence state. On the other hand, the two SBPSO algorithms explore even
more frequently than at the beginning. It can be seen from the figure that
the SBPSO algorithms alternatively explore and exploit while Up BPSO
focuses on exploration at the beginning and on exploitation at the end. In
comparison between dynamic SBPO and static SBPSO, in the later half of
the evolutionary process, dynamic SBPSO jumps out more frequently than
static SBPSO, which can avoid being stuck at local optima.

4.5.6 Comparison with non-EC based Feature Selection

Recently, sparse learning based feature selection methods gain a lot of at-
tention. The idea is to find an optimal weight vector, which minimizes the
fitting error along with some regularization terms. Because of the sparse

128 CHAPTER 4. NOVEL BPSO FOR FS

●

●

●

●

●

●●

●

●●●

●●

●●●●●●●●●●

●●

●●

●●●

●

●

●●

●

●

●●

●●

●●

●

●

●●●

●●●●

●●●

●●●

●

●

●

●●●●

●

●●●●●●

●●●●●●●●●●●●

●

●●●

●●

●●●

●

●

●

●

●●

●●●

●

●

●

●●●

●

●

●●●

●

●●●●●

●

●●

●●

●●●

●●●●●

●●

●

●●

●

●●

●●

●

●●●●

●

●

●●

●

●●●●●

●●

●●●

●●

●●

●

●

●●

●

●●

●

●●●●●●●●●●●●

●

●●

●

●●

●●

●●●

●

●

●●

●●

●●●

●●

●

●

●

●●●●

●

●●

●

●●●●

●

●●●●

●

●

●●

●

●●●●

●

●●●●●●●

●

●

●

●●●

●

●●●●●●

●●

●●●●●●●

●

●

●

●●●●●●●

●●●●

●●●●●●●●●●●●●●

●

●●

●

●●●

●●

●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●

●●●●

●

●●

●●

●●●

●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

State−Up

Iterations

S
ta

te

0 100 200 300 400

1
2

3
4

●

●

●

●

●

●●

●

●

●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●

●

●●

●●

●●●●

●

●

●

●

●

●

●

●

●●●●●●

●●●

●●●

●●

●

●●●●●

●●

●

●●●●●●

●●●

●

●●

●

●●●

●

●●●●●

●●●●●

●●

●●

●

●●

●●

●

●●●●

●

●

●

●●●●●●●●●●●

●●●●

●●●●●

●

●●●●●●●●●●

●●

●●●

●

●●

●●●●●●

●●●

●

●

●●

●●

●●●●●●●●

●●

●●

●●

●

●●●●●●

●

●●●●

●

●●

●●

●●

●

●

●●●●

●●

●

●●●●●

●●●

●●●●●●

●

●●●

●●

●●

●●●●●

●●●●●

●●

●●●

●

●●

●

●●

●

●●

●●

●

●●

●●●

●

●

●

●●●●

●●●●●●

●

●●

●●●●

●●

●●●

●●●●●●

●●

●●●

●●●●

●●

●

●●●●

●●●●●●●

●●

●●●●●

●

●●

●●●●

●●●●●●●

●

●●●●

●

●●

●

●●●

●●●

●

●

●●●●●●●

●

●

●

●

●

●●●●●●

●

●

●●

●

●

●●

●

●●●●●●

●

●

State−Stat

Iterations

S
ta

te

0 100 200 300 400

1
2

3
4

●

●●

●

●●●

●●

●

●●●

●

●●●●

●

●●●●●

●

●●●●●●●●●●

●

●

●●●●●

●●

●●●●

●●●

●●●

●

●●●●●●●●●

●

●●●●●●

●

●●●●

●

●●●●●●●

●

●●

●

●

●●●●

●

●●●●●●●

●

●●●

●

●●●●●●●●

●●

●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●

●

●●

●

●●

●

●

●

●●●●●

●

●

●●

●

●●●

●

●●

●

●

●

●●

●●●

●

●●

●●●

●

●●

●

●●●

●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●●●●●

●

●●●●●

●

●

●●●●●●

●●●●

●

●

●●●●●

●●

●

●●●

●●●●●●

●●●●

●

●

●

●●●

●●

●●●

●●

●●●

●●

●●

●

●

●●●

●●●●●

●

●●

●

●●●●●●●

●●●

●

●

●●

●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●●●●

●

●●●●●●●●

●●

●

●

●

●●

●●●●●●●●●

●●

●

●

●●●

●●●●

State−Dyn

Iterations

S
ta

te

0 100 200 300 400

1
2

3
4

Figure 4.5: Evolutionary state of BPSO algorithms.

regularizer, some learned weights will be very small and their correspond-
ing features are discarded. However, these methods usually require a pre-
defined number of selected features. Among sparse learning based feature
selection methods, the robust feature selection method (RFS) [217] is one
of the most popular ones. Instead of using the `2-norm based loss func-
tion, `2,1-norm is applied to avoid outliers in data points. In addition, `2,1
is also cheaper to calculate. The formula of `2,1 of a vector V is given in Eq.
(4.13).

||V ||2,1 =

√√√√ |V |∑
i=1

V 2
i (4.13)

Experimental results on six datasets show the better performance of
RFS over several popular traditional feature selection approaches. There-
fore, in this chapter, RFS is selected as a benchmark algorithm to compare

4.5. EXPERIMENTS ON FEATURE SELECTION 129

Dataset Wine Australian Vehicle German WBCD Ionosphere

RFS 91.36 83.57 80.31 43.33 91.81 81.90
Dyn 98.15 82.26 83.78 69.32 94.65 86.59

Dataset Sonar Hillvalley Musk1 Arrhythmia Madelon MFs

RFS 73.02 54.95 83.22 92.76 84.36 91.43
Dyn 79.71 59.02 86.00 95.26 81.95 99.07

Table 4.11: Classification accuracies of Dyn and RFS.

with our dynamic SBPSO-based feature selection (Dyn).

To ensure a relatively fair comparison, the average numbers of features
selected by Dyn are used as pre-defined numbers of features for RFS. Re-
sults of the two algorithms are presented in Table 4.11, where the bold
letter means that the corresponding method is significantly better than the
other one. It can be seen that on 11 out of the 12 datasets, Dyn achieves
significantly higher accuracies than RFS. The largest difference is on the
German dataset, where Dyn is 26% better than RFS. Notice that on Aus-
tralian, although the Dyn’s average classification accuracy is lower than
the one of RFS, Dyn is still significantly better than RFS. The reason is that
on 42 out of the 50 independent runs, Dyn achieves 85.52% which is 2%
better than RFS. There might be an outlier with too low classification ac-
curacy, which reduces the average accuracy.

The superior of Dyn is the result of several reasons. Firstly, RFS as-
sumes a linear relationship between feature vectors and the class label,
which is not guaranteed in most real-world datasets. Furthermore, RFS
is based on its built-in weight matrix to select a number of top features,
which may ignore the interactions between features and is likely to select
redundant features. By applying dynamic SBPSO, it is not needed to pre-
define the number of selected features as in RFS. In SBPSO-based feature
selection algorithms, the selected features are evaluated as a group, so the
feature interactions are considered.

130 CHAPTER 4. NOVEL BPSO FOR FS

4.6 Chapter Summary

In this chapter, a new BPSO approach is proposed to better explore the
search space and evolve better solutions for binary problems. In standard
BPSO, the velocity and momentum from continuous PSO are applied di-
rectly despite the fact that the binary search space is not as smooth as the
continuous search space. In the proposed algorithm, the two concepts are
revised so that the particles move around the search space in a more mean-
ingful way. In addition, a dynamic strategy is also developed to control the
contributions of momentum, pbest and gbest to the movement of particles,
which results in the balance between exploration and exploitation during
the evolutionary process. Depend on whether the dynamic mechanism
is applied or not, the proposed BPSO algorithm has two versions: dy-
namic and static SBPSO, respectively. To examine the performance of the
proposed algorithm, a large number of experiments have been conducted
on two well-known types of binary problems: knapsack and feature selec-
tion. The performance of SBPSO is compared with GAs, DE, and Up BPSO
which is a state-of-the-art BPSO algorithm. The experimental results show
that the dynamic SBPSO algorithm can achieve similar or better perfor-
mance than the other four algorithms on most of the datasets from the two
binary problems. Especially on feature selection, SBPSO usually selects
the smallest number of features while maintaining or improving the clas-
sification performance over other algorithms. While DE works quite well
with small knapsack datasets, it cannot achieve as good results as both
static and dynamic SBPSO on the datasets with a large number of items or
features. In comparison with static SBPSO, dynamic SBPSO can better bal-
ance the trade-off between exploration and exploitation to finally evolve
better solutions than static SBPSO. The evolutionary processes show that
dynamic SBPSO performs exploration and exploitation iteratively, which
keeps improving the fitness value. On the other hand, Up BPSO signifi-
cantly improves the fitness values in the last 16% iterations.

4.6. CHAPTER SUMMARY 131

The chapter brings the following major contributions. Firstly, by con-
sidering the differences between binary and continuous search spaces, the
velocity of BPSO is redefined as the probability of flipping the position
entries, which reflects the movements in binary search space more accu-
rately. The momentum of BPSO is also modified since there is no direction
in a binary search space. Specifically, it is defined as the tendency to stick
with the current position, known as the stickiness property. Secondly, the
two revised concepts help to define exploration and exploitation easier
in BPSO, from which a dynamic mechanism is proposed to balance be-
tween exploration and exploitation. The experimental results show that in
comparison with the static SBPSO, the dynamic one explores more at the
beginning while jumping out of the local optima more frequently in the
later iterations, which avoids the premature convergence problem. Last
but not least, the experimental results also show that iteratively switch-
ing between exploration and exploitation during the evolutionary process
achieves good results on complicated search spaces which have a large
number of dimensions and/or complex interactions between dimensions.
Given the ability to alternate between exploration and exploitation, it is
expected that SBPSO can be widely applied to other complicated binary
problems.

This chapter develops a novel BPSO algorithm with good results. There
is still a lot of future work can be done in this direction. For example, it
can be seen that the dynamic SBPSO algorithm performs extremely well
on the large and complex search spaces. However, the performance is not
significantly improved in the small problems. This could be tackled by
developing an adaptive mechanism for parameter settings which consid-
ers the feedback from search spaces to automatically adjust the dynamic
mechanism. Although the proposed BPSO algorithm has better efficiency
than other algorithms in feature selection, the improvement is not quite
significant since the evaluation process, which is the most time-consuming
step, is the same for all algorithms. In the next chapter, a surrogate model

132 CHAPTER 4. NOVEL BPSO FOR FS

is proposed to speed up the evaluation process.

Chapter 5

Surrogate Model for Feature
Selection

5.1 Introduction

Wrapper-based feature selection approaches usually achieve high classifi-
cation performance. However, the effectiveness comes along with an ex-
pensive computational cost. The question is how to reduce the compu-
tational cost of wrappers while still maintaining or even improving their
performance. In general, the most computationally intensive part of wrap-
pers is the evaluation step which involves a classification process. In order
to speed up wrappers, it is necessary to make the evaluation step faster,
which is the main motivation of this chapter.

5.1.1 Chapter Goal

The overall goal of this chapter is to propose an effective surrogate model
for wrapper PSO-based feature selection, which is expected to reduce the
computational cost of wrappers while maintaining or even improving the
classification performance. Particularly, a surrogate training set, which
contains a small number of informative instances, is built to assist PSO

133

134 CHAPTER 5. SURROGATE MODEL FOR FS

quickly locate promising regions in the search space. In this chapter, the
informative instances can be selected by two approaches including DROP3
[218] (an instance selection algorithm) and a hierarchical clustering al-
gorithm [219]. Furthermore, the relationship between surrogate and full
training sets is also investigated, from which a dynamic surrogate model
is proposed so that it can adapt with different datasets to select a small
number of features with high discriminating abilities. Specifically, we will
investigate the following questions:

• whether the two methods can achieve similar or better performance
than using the original training set;

• which of the two approaches are better to build the surrogate train-
ing set;

• whether a bigger surrogate training set can lead to better feature
subsets. Note that when the size of the surrogate training set is
increased, the surrogate training set is more similar to the original
training set, and

• whether the proposed dynamic surrogate model can select suitable
surrogate training sets, which helps to evolve better feature subsets
in a shorter training time than using the original training set.

5.2 Proposed Methods

5.2.1 Static Surrogate Model for PSO-based Feature Selec-

tion

A large training set is one of the main reasons for a classification pro-
cess being expensive, which leads to a computationally intensive cost for
wrapper-based feature selection. In addition, there might be some noisy
instances which may deteriorate the classification performance. In order

5.2. PROPOSED METHODS 135

to reduce the computational cost and at least maintain the accuracy, an
instance selection algorithm can be used to select a small number of repre-
sentative instances to form an instance subset, called a surrogate training
set, which is expected to contain essential information from the original
training set. The fitness function calculated on the surrogate training set is
called a surrogate fitness function, which can be considered as an estimation
of the original fitness function. In this section, two efficient approaches are
considered to build the surrogate training set, which are DROP3 [218] and
a clustering algorithm [219]. Firstly, the two approaches are described in
details, which is followed by an explanation about how to use the surro-
gate training set in PSO-based feature selection.

DROP3-based surrogate training set

Wilson et al. [220] propose several efficient instance selection algorithms.
Among the proposed algorithms, it has been shown in [218] that DROP3
achieves good performance. In general, DROP3 reduces the number of
instances by removing central instances and retaining border instances.
The main reason is that the internal instances do not affect the decision
boundaries as much as the border instances. Therefore, removing the cen-
tral instances has less side effect on the classification performance than
removing the border instances.

DROP3 starts with filtering out all noisy instances, which are assigned
to wrong class labels by their Knearest neighbors. This step also removes
instances in the middle of two or more class boundaries, which creates
a smoother decision boundary. For each remaining instance, there is an
“enemy" instance, which is the closest instance with a different class la-
bel. The distance from an instance to its “enemy" instance is called the
“enemy" distance. Therefore, the larger the “enemy" distance an instance
has, the farther the instance is to its class label boundary. All remaining in-
stances are sorted according to their “enemy" distances so that the internal
instances, which are far from their class label boundary, are removed first.

136 CHAPTER 5. SURROGATE MODEL FOR FS

For each instance, its removing process relates to its associated instances,
which have the instance as one of their Knearest neighbors. If removing
the instance does not reduce the number of correctly classified associated
instances, then the instance will be removed. The set of selected instances
is used as the surrogate training set.

Clustering-based surrogate training set

The second approach to build the surrogate training set is to use clustering
algorithms, which groups similar instances in the same group or cluster.
A representative is formed for each cluster, which will contribute as one
instance into the surrogate training set. Therefore, the size of the surrogate
training set is equal to the number of clusters. In this chapter, the centroid
of a cluster, which is the instance closest to the cluster’s mean, is selected
as the representative. The main reason is that using original instances can
preserve the relationships/interactions between features while building a
new instance from a cluster is more likely to construct new feature interac-
tions, which do not exist in test sets. Note that a cluster may not be pure,
which means that it may contain instances from different classes. There-
fore, only instances from the majority class, which contributes the largest
number of instances in the cluster, are used to select the representative for
the cluster.

The question is which clustering algorithm should be used here. K-
means has proposed about 50 years ago and has been widely used in clus-
tering [221], which may be a good option. However, the main task of this
chapter is to analyze how surrogate training sets with different sizes af-
fect performances of the selected feature subset. Therefore, K-means has
to be run many times with different numbers of clusters, which is time-
consuming. Agglomerative clustering (AGG) [219] is a bottom-up hierar-
chical clustering algorithm in which each instance starts with its own clus-
ter. When moving up the hierarchy, the two closest clusters are merged
into one cluster. An example of the agglomerative clustering algorithm is

5.2. PROPOSED METHODS 137

Figure 5.1: An example of the agglomerative clustering algorithm.

given in Fig. 5.1.

Note that although both DROP3 and AGG are deterministic algorithms,
they have very different outputs and behaviors. DROP3 directly produces
a unique surrogate training set for each dataset. On the other hand, AGG
results in a set of possible clustering partitions, whose numbers of clusters
(#c) can be from 1 to the total number of instances in the original train-
ing set (as shown in Fig. 5.1). If #c is decided, AGG produces only one
unique clustering partition containing a unique set of clusters. Since only
the centroid instance is selected from each cluster, the size of surrogate set
formed by AGG is equal to the number of clusters #c.

Surrogate training process

Surrogate models for fitness evaluations can be divided into three cate-
gories: individual-based models, generation-based models and population-
based models [222]. In individual-based models, some individuals from
the population are calculated by using the original fitness function, and
other ones are evaluated by the surrogate fitness function. Population-
based models have more than one sub-populations, which might use dif-
ferent surrogate fitness functions. The communication and exchanging
individuals from different sub-populations are allowed. For generation-
based models, the surrogate fitness function is used in some of the gener-
ations before the original fitness function is used in the rest of the gener-
ations. In PSO, the swarm starts by exploring the search space to locate

138 CHAPTER 5. SURROGATE MODEL FOR FS

promising areas, which are then exploited in the later iterations. It can
be said that in early iterations the swarm tries to estimate the possible re-
gions of global optima. In the sense of estimation, it would be safe to use
the surrogate model at the beginning of a PSO algorithm to locate promis-
ing areas before using the original fitness function to find out the exact
optima. Therefore, the idea of generation-based model is suitable here.
Specifically, the particles are evaluated using the surrogate training set in
the first Is iterations, while in the rest iterations, the whole training set is
used. Given I is the maximum number of iterations, the task is to figure
out the value of Is iterations so that the classification performance is still
maintained or even improved over using the original fitness function. The
ratio between Is and I is called the surrogate rate αs, i.e. αs = Is

I
.

Local search: sampling on gbest

One advantage of using the surrogate training set is its efficiency. How-
ever, the surrogate approach aims to estimate the fitness function, which
usually achieves at most the same performance as using the whole train-
ing set. Given that we save a lot of computational time, we can spend
a part of the saved computation time on a local search with an expecta-
tion to obtain a better solution despite using the surrogate training set. Of
course, the local search should be efficient so that both the effectiveness
and efficiency can be improved over using the original training set.

In a PSO algorithm, the main idea is to use the current gbest and pbest

to guide the particles to follow promising trajectories. However, the gbest
from the previous iterations might contain some useful information, which
can assist the swarm to achieve better solutions. For instance, in feature se-
lection, features which appear in gbest for many iterations tend to be good
features. Moreover, since feature selection has a large and complex search
space, some good features might not be selected together in the gbest so-
lutions. These features might be complementary features, which provide
even more information about the class label when appearing in one fea-

5.2. PROPOSED METHODS 139

ture subset. Therefore the main idea of the local search is to keep features
selected on all gbest and use them to improve the current gbest.

Suppose that Sbest is the set of features which are selected by gbest from
previous iterations. Each feature from Sbest has a score (explained later and
shown in Eq. (5.1)). The local search constructs P

2
candidate solutions by

using Sbest, where P is the population size. |gbest|, the number of features
in the current gbest, is the maximum number of features in each candidate
feature subsets. Specifically, based on the calculated scores, a tournament
selection is used to select |gbest| features from Sbest, which form a sam-
pled feature subset. The higher a feature’s score is, the more chance that
feature is selected. In addition, in |gbest| selected features, there might be
some duplicated features, which means that the size of the sampled fea-
ture subset can be less than |gbest|. All sampled feature subsets are then
compared with each other based on their surrogate fitness values to find
the best candidate feature subset. In this way, the local search utilizes the
surrogate training set to approximate a good solution in a short time. Af-
ter that, the best candidate subset and the current gbest compete on the
current fitness function, fitnesscur, which is the surrogate fitness function
in the first Is iterations or the original fitness function in the last (I − Is)
iterations. The winner becomes the new gbest.

The task now is to define the scores of features in Sbest. The main idea
is to give higher scores to features, which are selected more frequently and
recently by gbest. The first component of the score is freq, which measures
the number of iterations, in which a feature is selected in gbest. The higher
freq a feature has, the better the feature’s quality. Before contributing to
the score, freq is normalized to freqn so that the total freqn of all features
from Sbest is 1. The second component of the score is related to the current
gbest, called gc. If a feature in Sbest is also selected in the current gbest, its
gc is set to 1

|gbest| . Otherwise its gc is 0. The score of the f th feature in Sbest

is the sum of its freqn and gc, which can be seen in Eq. (5.1).

scoref = freqnf + gcf (5.1)

140 CHAPTER 5. SURROGATE MODEL FOR FS

where

freqnf =
freqf∑|Sbest|

f=1 freqf

gcf =

 1
|gbest| , if f ∈ gbest

0, otherwise

As illustrated in Eq. (5.1), given the same freqn, the gc component
gives more scores to features which are recently selected. In addition, since
the best sampled subset might replace the current gbest, it is preferred to
keep the sampled subset close to the current gbest so that the swarm is not
distracted. The gc component lets the features from the current gbest to
have more chance to be chosen, which allows to build new feature subsets
not far from the current gbest. The local search is applied after the gbest of
the current iteration is determined and before that gbest is informed to all
particles.

Overall algorithm

Sticky binary PSO, which is proposed in Chapter 3, is applied to achieve
feature selection, in which each position entry corresponds to one original
feature. The value 1 of a position entry indicates that the corresponding
feature is selected; otherwise, the corresponding feature is not selected. In
this chapter, a feature subset is evaluated by the fitness function given in
Eq. (5.2)

fitness = γ × ErrorRate+ (1− γ)× #selected
#all

(5.2)

where PSO needs to minimize the classification error determined by a clas-
sification algorithm and the number of selected features. The proportions
of the two objectives are controlled by γ. If the classification algorithm is
trained on the surrogate training set, the corresponding fitness function is
a surrogate fitness function, denoted by fitnesssur. If the whole training
set is used to build the classifier then the fitness function is the original

5.2. PROPOSED METHODS 141

Figure 5.2: Overall algorithm using surrogate models.

one, called fitnessori. The overall PSO-based feature selection algorithm
using this static surrogate model is described in Fig. 5.2, in which the
contribution of this chapter is marked in blue. Socan is a sampled feature
subset, Sobest is the best Socan generated by the sampling process, and P is
the swarm size.

5.2.2 Dynamic Surrogate Model

Since the surrogate training set is used to estimate possible good regions,
it is important to ensure that the surrogate fitness value should be consis-
tent with the original fitness value i.e. the difference between the surro-
gate fitness value and the original fitness value should be small. However,
during the evolutionary process, the consistency between the surrogate
training set and the original training set may not be preserved. To address
this problem, a dynamic clustering-based surrogate model is proposed.
The task can be described as: “Given a pool of surrogate training sets,

142 CHAPTER 5. SURROGATE MODEL FOR FS

P = {S1, S2, ..., Sm}, which surrogate training set Si should be used to
evaluate feature subsets.”

In the initialization process, each particle is randomly initialized. After
evaluating the particles using the original training set S0, the position xbest
with the best real fitness value f0 is recorded to find out the most suitable
surrogate training set. Particularly, xbest is evaluated on m surrogate train-
ing sets, which results in m surrogate fitness values {f1, f2, ..., fm}. The
surrogate training set, which has the smallest difference in comparison
with the original training set, i.e. the smallest |fi − f0|, is used to evaluate
feature subsets in the following iterations. Hence, even in the initializa-
tion step, the surrogate training set is dynamically determined based on
its consistency with the original training set.

In the first Is iterations, feature subsets are evaluated by the surrogate
training set, which is also dynamically updated to preserve the consis-
tency with the original training set. However, updating the surrogate set
too frequently makes PSO more difficult to adapt to changes in the fitness
landscape. Therefore, the surrogate one is only updated when the real
fitness value of gbest is not improved for a certain number of iterations
(NIStep). The process of finding the most suitable surrogate training set
is similar to the method used in the initialization process, except for that
xbest is replaced by gbest. After the surrogate process, i.e. the first Is itera-
tions, is finished, the original training set is used to evaluate the candidate
solutions.

Therefore, the main difference between the static and the dynamic sur-
rogate model is which surrogate training set is used. While the surrogate
training set in the static model is fixed from the beginning, the surrogate
training set in the dynamic model is updated during the evolutionary pro-
cess.

5.3. EXPERIMENT DESIGN 143

5.3 Experiment Design

The proposed methods are tested on 12 datasets chosen from the UCI ma-
chine learning repository [32]. The datasets are selected so that they have
different numbers of features (#Fs), classes and instances, which can be
seen in Table 1.1. Each dataset is divided into training and test sets, so that
they contain 70% and 30% instances, respectively, and the class distribu-
tion is roughly preserved.

A KNN classification algorithm is used to classify instances, where
K=5. The weight γ in Eq. (5.2) is set to 0.9 so that the search process fo-
cuses more on the classification performance than the number of features.
For sticky PSO, the population size is equal to the number of features and
limited by 100. The maximum number of iterations is 100.

5 different values of Is ranging from 0 to 100 are examined and the
results show that 75 is the most suitable setting. Table 5.1 shows results
of statistical significance tests, which compare the value 75 and the other
four different values of Is on three datasets with different numbers of fea-
tures. “+”/ “=” / “-” means that 75 is significantly better/similar/worse
than the other values. It can be seen that Is = 75 achieves similar or bet-
ter performance than the three smaller values (0, 25, 50) while being less
computationally intensive. In addition, Is = 75 is significantly better than
100 i.e. using only the surrogate training sets. NIStep is set to 5 as an
indication that the algorithms might be trapped in local optima. An evo-
lutionary process of PSO on the Madelon dataset is shown in Fig. 5.3. It
can be seen that if the gbest’s fitness value (vertical axis) is not changed for
more than 5 iterations, it is very likely that the fitness value is not changed
in the following iterations.

144 CHAPTER 5. SURROGATE MODEL FOR FS

Table 5.1: Compare different Is values against Is = 75.

Dataset Is = 0 Is = 25 Is = 50 Is = 100

German + = = +
Sonar = = = =

Arrhythmia - = = +

●

●

●
●

●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●

● ●

0 20 40 60 80 100

0.
20

0.
22

0.
24

0.
26

Iteration

F
itn

es
s

Figure 5.3: Evolutionary process of PSO on the Madelon dataset

5.4 Results and Discussions

5.4.1 DROP3 vs AGG

Firstly, the DROP3 algorithm and the AGG algorithm are compared. To
ensure a relatively fair comparison, the number of clusters in the clus-
tering algorithm is equal to the number of instances selected by DROP3.
Therefore, the two algorithms result in two surrogate training sets with the
same size. The surrogate training sets built by DROP3 and AGG are used
in PSO-based feature selection to form two PSO-based algorithms called
“P-DROP3” and “P-AGG”, respectively.

Table 5.2 shows the comparison between P-DROP3 and P-AGG. In the
table, “#Features” means the number of selected features, “Training” and
“Testing” represent the training and testing accuracies, respectively. Note
that both DROP3 and AGG use the same number of instances to build
surrogate training sets. The two models are compared using Wilcoxon
test, a significance signed rank test with significance level set to 0.05. “↑”
or “↓” means that P-DROP3 is significantly better or worse than P-AGG,
while “◦” indicates that there is no significant difference between the two
algorithms. In terms of the training accuracy, P-AGG is significantly bet-

5.4. RESULTS AND DISCUSSIONS 145

Table 5.2: DROP3 vs Agglomerative Clustering algorithms.

Dataset
#Features Training Testing Time

P-DROP3 P-AGG P-DROP3 P-AGG P-DROP3 P-AGG P-DROP3 P-AGG

Wine 3.500(↑) 3.900 96.26(◦) 96.20 95.97(◦) 94.69 0.02 0.02
Australian 2.500(↑) 2.800 77.34(◦) 81.52 76.14(◦) 80.49 0.26 0.29
Vehicle 5.000(◦) 4.8 89.56(◦) 89.73 84.10(◦) 83.89 0.58 0.64
German 5.300(↓) 3.600 78.36(↑) 75.60 69.16(◦) 69.37 0.95 1.00
WBCD 2.000(◦) 2.000 94.64(↓) 95.18 93.18(↓) 94.54 0.34 0.38
Ionosphere 3.300(◦) 3.500 93.97(◦) 93.76 86.31(↓) 87.68 0.16 0.18
Sonar 10.20(◦) 11.10 89.77(↓) 91.24 78.84(◦) 77.78 0.14 0.15
Hillvalley 22.30(↓) 15.50 74.37(◦) 74.65 58.55(◦) 59.07 7.06 7.35
Musk1 60.90(↓) 46.80 94.01(↑) 93.32 84.20(◦) 84.96 1.52 1.43
Arrhythmia 26.20(↑) 33.40 95.88(◦) 95.92 94.94(◦) 94.90 0.84 1.04
Madelon 195.3(↓) 152.6 88.99(↓) 89.91 79.64(↓) 81.85 62.19 55.65
Multiple Features 94.00(◦) 101.4 99.52(↓) 99.55 99.00(◦) 99.01 27.28 32.11

ter than P-DROP3 on four datasets while being worse only on German
and Musk1. On the test set, the feature subsets selected by P-AGG are
never worse than the subsets selected by P-DROP3. On three out of the 12
datasets, P-AGG’s accuracies are significantly better than DROP3’s. In ad-
dition, the feature subsets selected by P-AGG are similar or smaller than
the ones selected by P-DROP3 on 10 datasets. The experimental results
show that given the same number of selected instances, P-AGG can main-
tain more informative instances to form more consistent surrogate training
sets, which results in better classification accuracies.

The reason that P-AGG outperforms P-DROP3 can be explained as fol-
lows. The main idea of DROP3 is to preserve all instances on class bound-
aries and remove all inner instances, which requires the training set is
nicely distributed. Let consider two examples given in Figs. 5.4 and 5.5,
where there are two class labels (marked by red and green) and a KNN
classification algorithm is used with K= 3. In Fig. 5.4, the two green ones
inside the dotted circle have the largest distances to instances from other
classes, which means that they are considered to be removed first. It is
obvious that removing the two instances does not affect any other green
instances since they are too far from the two instances. Therefore, DROP3

146 CHAPTER 5. SURROGATE MODEL FOR FS

Figure 5.4: DROP3 may remove informative instances.

Figure 5.5: DROP3 cannot remove noisy instances.

will remove them despite they are on the class boundary. The consequence
can be seen in classifying an unseen instance (marked by a question mark).
If the two green instances are not removed, it will be classified as a green
instance, but removing them changes the class label of the unseen instance.
Thus DROP3 removes informative instances. Meanwhile, AGG is likely to
group the two green instances in one cluster, which ensures that the infor-
mation from the two instances is preserved.

Fig. 5.5 gives an example where DROP3 is not able to remove noisy
instances. It can be seen that in Fig. 5.5, there are three noisy red in-
stances located inside the region of the green class. The distances from
the three red instances to the green class are definitely smaller than any
other red instances, so according to DROP3 they are likely to be on the
class boundary. In addition, removing one of the three red instances will
wrongly classify the other two, so none of them is discarded by DROP3.
On the other hand, AGG groups the three noisy red instances with their
surrounding green instances in the same cluster and the noisy instances
will be removed since the red class is the minority one in this cluster. It
is possible that DROP3 removes informative instances or keeps noisy in-
stances, which can be avoided by using AGG.

5.4. RESULTS AND DISCUSSIONS 147

5.4.2 Results of Clustering-based Surrogate Models

Given the good results achieved by the clustering-based surrogate model,
it is used to analyze the effect of different sizes of the surrogate set. Five
surrogate training sets, whose sizes range from 10% to 50% of the orig-
inal training set, are generated. The lower bound 10% is to ensure that
the surrogate training sets contain enough training instances. The upper
bound is set to 50% so that the surrogate model still can significantly re-
duce the computational cost over using the original training set. The five
surrogate training sets form a training set pool, from which the dynamic
surrogate model picks the most suitable training set during the surrogate
process. The percentages i.e “10%”, “20%”, “30%”, “40%” and “50%” are
used to name the PSO-based feature selection algorithms which statically
use the corresponding surrogate training sets. “Dyn” stands for the PSO-
based feature selection algorithm which dynamically determines the suit-
able surrogate training set (dynamic surrogate model). “Ori” stands for
the PSO-based feature selection algorithm which uses the original train-
ing set in the whole evolutionary process. Since Chapter 4 already showed
that the SBPSO-based feature selection algorithm using the original train-
ing set (“Ori”) was already better than using all features, this chapter fo-
cuses on comparing the proposed surrogate models with “Ori” to illus-
trate the effect of using surrogate models.

Effect of the static surrogate model

The results of clustering-based static surrogate models with different sizes
of the surrogate set are shown in Table 5.3. The best classification accura-
cies on both training and test sets are marked in bold. In comparison with
other clustering-based models, P-AGG does not achieve the best classifica-
tion accuracy on any dataset. In terms of the number of selected features,
P-AGG usually selects a smaller number of features than the other meth-
ods. The reason for this pattern is that P-AGG uses the smallest number of

148 CHAPTER 5. SURROGATE MODEL FOR FS

Table
5.3:R

esults
ofclustering-based

surrogate
m

odels.

D
ataset

Training
accuracy

Tim
e

(m
inutes)

O
ri

P-A
G

G
10%

20%
30%

40%
50%

D
yn

O
ri

P-A
G

G
10%

20%
30%

40%
50%

D
yn

W
ine

96.29(↑)
96.20(◦)

96.04(◦)
96.26(↑)

96.31(◦)
96.04(◦)

96.26(◦)
96.13

0.06
0.02

0.02
0.02

0.03
0.03

0.04
0.04

A
ustralian

84.22(◦)
81.52(◦)

85.42(◦)
82.13(◦)

80.78(◦)
81.82(◦)

79.22(◦)
80.15

0.92
0.29

0.29
0.29

0.35
0.43

0.47
0.46

Vehicle
89.79(◦)

89.73(◦)
89.59(◦)

89.60(◦)
90.09(◦)

89.48(◦)
89.88(◦)

89.88
1.88

0.64
0.55

0.61
0.72

0.87
1.07

0.85
G

erm
an

79.31(◦)
75.60(↓)

76.77(◦)
80.41(↑)

82.55(↑)
81.21(↑)

80.97(◦)
78.56

3.62
1.00

0.95
1.16

1.38
1.69

2.05
1.35

W
BC

D
95.13(◦)

95.18(◦)
95.92(↑)

95.19(◦)
94.74(↓)

95.06(◦)
95.31(↑)

95.14
1.34

0.38
0.37

0.42
0.49

0.59
0.73

0.67
Ionosphere

94.04(↑)
93.76(◦)

93.44(◦)
93.57(◦)

93.75(◦)
93.89(◦)

93.89(◦)
93.66

0.59
0.18

0.17
0.19

0.23
0.28

0.34
0.30

Sonar
91.97(◦)

91.24(◦)
90.28(↓)

91.13(◦)
91.08(◦)

91.38(◦)
91.19(◦)

91.08
0.36

0.15
0.11

0.12
0.14

0.17
0.21

0.17
H

illvalley
74.80(◦)

74.65(◦)
74.60(◦)

74.38(◦)
74.92(◦)

74.48(◦)
74.82(◦)

74.85
23.86

7.35
6.43

7.10
8.35

10.08
12.74

10.78
M

usk1
95.67(↑)

93.32(↓)
93.48(◦)

94.23(◦)
93.90(◦)

94.24(◦)
93.85(◦)

94.02
4.98

1.43
1.03

1.21
1.46

1.81
2.16

1.51
A

rrhythm
ia

96.01(↓)
95.92(↓)

95.74(↓)
95.73(↓)

96.06(↓)
96.13(◦)

96.18(◦)
96.17

4.22
1.04

1.07
1.28

1.45
1.74

2.15
2.14

M
adelon

89.92(↓)
89.91(↓)

89.64(↓)
89.82(↓)

90.09(◦)
90.47(◦)

90.61(◦)
90.41

219.83
55.65

52.65
60.48

66.62
81.18

99.94
91.34

M
ultipleFs

99.55(◦)
99.55(◦)

99.54(◦)
99.55(◦)

99.57(◦)
99.55(◦)

99.55(◦)
99.56

119.71
32.11

30.23
50.40

41.05
46.99

54.76
58.74

D
ataset

Testing
accuracy

#Features
O

ri
P-A

G
G

10%
20%

30%
40%

50%
D

yn
O

ri
P-A

G
G

10%
20%

30%
40%

50%
D

yn

W
ine

97.53(↑)
94.69(◦)

95.23(◦)
94.40(◦)

97.20(↑)
91.52(◦)

97.49(↑)
94.16

3.2
3.9

3.2
3.2

3.4
3.1

3.2
3.1

A
ustralian

82.82(◦)
80.49(◦)

82.50(◦)
81.02(◦)

79.36(◦)
80.45(◦)

78.02(◦)
78.88

2.9
2.8

3.0
2.8

2.8
2.8

2.6
2.6

Vehicle
83.75(◦)

83.89(◦)
84.32(↑)

83.88(◦)
83.43(◦)

83.47(◦)
83.54(◦)

83.60
4.8

4.8
5.3

4.9
4.9

4.5
5.3

5.0
G

erm
an

69.08(◦)
69.37(◦)

68.59(◦)
68.99(◦)

69.50(↑)
69.22(◦)

69.45(↑)
68.56

5.7
3.6

3.7
5.7

6.1
6.0

5.8
4.9

W
BC

D
94.51(◦)

94.54(◦)
93.39(↓)

93.88(◦)
92.71(↓)

93.53(↓)
94.62(↑)

94.13
2.0

2.0
2.6

2.2
2.4

2.4
2.1

2.2
Ionosphere

87.24(◦)
87.68(◦)

88.09(◦)
88.00(◦)

88.25(◦)
87.52(◦)

87.65(◦)
87.52

4.2
3.5

3.6
3.4

3.4
3.6

3.7
3.4

Sonar
79.68

(◦)
77.78(◦)

77.88(◦)
78.63(◦)

79.74(◦)
79.15(◦)

79.52(◦)
79.42

12.8
11.1

11.6
10.7

12.3
12.8

11.9
13.1

H
illvalley

58.84(◦)
59.07(◦)

58.98(◦)
58.44(◦)

58.86(◦)
59.14(◦)

58.37(◦)
58.88

24.3
15.5

20.5
19.2

16.6
16.1

18.4
19.3

M
usk1

85.85(◦)
84.96(◦)

84.13(◦)
84.50(◦)

84.03(◦)
86.08(◦)

85.76(◦)
84.92

58.4
46.8

38.6
47.8

53.0
54.8

48.6
44.4

A
rrhythm

ia
95.02(◦)

94.90(◦)
94.81(↓)

94.74(↓)
94.94(↓)

95.09(◦)
95.16(◦)

95.16
41.4

33.4
44.9

43.3
37.7

33.5
28.2

28.3
M

adelon
80.28(↓)

81.85(↓)
80.80(↓)

81.91(◦)
82.65(◦)

83.34(↑)
82.89(◦)

82.64
189.1

152.6
169.3

154.2
144.4

124.8
132.9

138.4
M

ultipleFs
99.03(◦)

99.01(◦)
99.04(◦)

99.04(◦)
99.07(◦)

99.04(◦)
99.05(◦)

99.06
116.8

101.4
112.3

109.5
95.2

92.0
88.6

88.5

5.4. RESULTS AND DISCUSSIONS 149

instances, so it does not need to select as many features as the other meth-
ods. This is an example of underfitting, where AGG does not have enough
instances to select a sufficient number of informative features which are
necessary for classifying unseen instances.

As can be seen in Table 5.3, depending on characteristics of the datasets,
the best accuracies are achieved by different sizes of surrogate training
sets. Mostly the surrogate training sets ranging from 30% to 50% pro-
duce the best accuracies since these training sets are more similar to the
original ones. However, on 3 datasets, Australian, Vehicle and WBCD,
10% achieves the best performance, which may be an indication that the
3 datasets have noisy instances and small size surrogate training sets help
to eliminate these instances. An important pattern shown in Table 5.3 is
the consistency between training and testing performance. Specifically,
on 6 out of the 12 datasets, both best training and testing accuracies are
achieved by the same method. On the other datasets, although the exact
consistency does not happen, the method with the best testing accuracy
usually has the second best training performance. This pattern shows that
to some extent, using surrogate models can help to avoid overfitting.

In comparison with using the whole training set shown in column
“Ori” of Table 5.3, the static surrogate model usually achieves better clas-
sification accuracy. Particularly, on both training and test sets, there is
at least one static surrogate model achieves better classification accuracy
than Ori on most datasets. In terms of the number of selected features,
Ori usually selects more features than most static surrogate models, es-
pecially on the datasets with a large number of features. In addition, the
three datasets on which Ori achieves the best training accuracy are totally
different from the two datasets on which Ori achieves the best testing accu-
racy. This pattern indicates that some features selected by using the whole
training set might not be useful on the test set, which is partially avoided
by using surrogate training sets.

In order to analyze the condition for a surrogate model to locate good

150 CHAPTER 5. SURROGATE MODEL FOR FS

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ●
0.15

0.20

0.25

0.30

0.35

0 25 50 75 100

F
itn

es
s

Percentage

●

10%
20%
30%
40%
50%

Australian

●

●

● ● ● ● ● ● ●

● ● ● ● ● ●

●

● ●

● ● ●0.24

0.26

0.28

0.30

0.32

0.34

0 25 50 75 100

F
itn

es
s

Percentage

●

10%
20%
30%
40%
50%

German

●

●

●

●

●

● ● ●
●

●

● ● ● ● ●

●

●

●
●

● ●0.1

0.2

0.3

0.4

0 25 50 75 100

F
itn

es
s

Percentage

●

10%
20%
30%
40%
50%

Sonar
●

●

● ●

● ●

● ● ●

●

● ● ●
●

●

●

●

●

●

●
●

0.05

0.06

0.07

0.08

0.09

0 25 50 75 100

F
itn

es
s

Percentage

●

10%
20%
30%
40%
50%

Arrhythmia

●

●

● ● ● ● ● ● ●

●

● ●

● ● ●

● ●
●

●

● ●0.15

0.20

0.25

0.30

0 25 50 75 100

F
itn

es
s

Percentage

●

10%
20%
30%
40%
50%

Madelon
●

● ● ● ● ● ● ● ●

●

● ●
● ● ●

●

● ●

● ●
●

0.02

0.03

0.04

0 25 50 75 100

F
itn

es
s

Percentage

●

10%
20%
30%
40%
50%

Multiplefeatures

Figure 5.6: Real evolutionary processes on static surrogate models.

search regions, for each surrogate model (10%-50%), the evolutionary pro-
cess of the best run is shown in Fig. 5.6. The horizontal axis is iterations
and the vertical axis shows the fitness value of gbest on each iteration.
In the figure, the evolutionary processes of Australian, German, Sonar,
Arrhythmia, Madelon and Multiple Features are shown. The evolution-
ary processes on the other 6 datasets have similar patterns. Note that in
the first 75 iterations, particles are evaluated by the surrogate set, which
means that in terms of the surrogate fitness value, the gbest in the later
iteration is always not worse than the gbest in the earlier iterations. How-
ever, in the figure, the gbest is re-evaluated by using the original training
set, which does not guarantee that the gbest in the later iteration always
has similar or better original fitness value than the gbest in the earlier it-
erations. Therefore, the less fluctuating evolutionary process shows that
the corresponding surrogate model is more consistent with the original
training set. By collating Table 5.3 and Fig. 5.6, it can be seen that usually

5.4. RESULTS AND DISCUSSIONS 151

the method with the least fluctuating evolutionary process yields the best
classification accuracy. For example, on the Arrhythmia dataset, the best
training and testing accuracies are achieved by the 50% surrogate model,
which has the least fluctuating evolutionary process.

Effect of the dynamic surrogate model

It is important to maintain the consistency between the surrogate and the
original training sets. However, which surrogate set should be selected
heavily depends on datasets. Therefore, the dynamic surrogate model is
designed with an expectation of automatically selecting the most suitable
surrogate training set during the evolutionary process. The results of the
dynamic one are shown by the “Dyn” column in Table 5.3. A Wilcoxon
signed rank test is used to compare the dynamic and other fixed-size sur-
rogate models. “↑”/ “↓” or “◦” shows that the other algorithms are sig-
nificantly better/worse or similar compared with the dynamic surrogate
model.

In comparison with using the original training set, Dyn mostly achieves
similar testing classification accuracies while selecting significantly smaller
numbers of features. In comparison with other static surrogate models on
the training set, the dynamic model (Dyn) usually achieves similar or bet-
ter classification performance. Specifically, Dyn is significantly better than
P-AGG on 5 datasets. From 10% to 30%, the number of datasets, on which
Dyn is superior, ranges from 3 to 2. Dyn also achieves the similar train-
ing accuracy as 40% and 50% on 11 out of the 12 datasets. Similarly, on
the test sets, except for 50%, Dyn achieves similar or better classification
accuracies on most datasets. In terms of the number of selected features,
Dyn often selects a smaller number of features than other static surrogate
models.

Given 30%, 40% and 50% are the most promising static surrogate mod-
els, they are further compared with Dyn in terms of the best evolved fit-
ness values, which is shown in Table 5.4. As can be seen from the table,

152 CHAPTER 5. SURROGATE MODEL FOR FS

Table 5.4: Fitness values (x100) of different surrogate models

Dataset 30% 40% 50% Dyn

Wine 6.830(◦) 7.120(↓) 6.870(◦) 6.940
Australian 15.21(◦) 14.76(◦) 14.77(◦) 14.50
Vehicle 16.11(◦) 16.10(◦) 16.13(◦) 16.02
German 26.24(◦) 25.97(◦) 25.81(◦) 26.00
WBCD 6.270(↓) 5.850(↓) 5.220(↑) 5.520
Ionosphere 7.090(◦) 7.120(◦) 7.070(◦) 6.970
Sonar 13.52(◦) 12.40(◦) 12.41(◦) 13.01
Hillvalley 35.94(◦) 35.93(◦) 36.03(◦) 35.89
Musk1 9.970(◦) 9.540(◦) 9.080(◦) 9.310
Arrhythmia 5.330(↓) 5.100(↓) 4.850(◦) 4.870
Madelon 16.98(◦) 15.89(↑) 16.22(◦) 16.45
Multiple Features 1.980(◦) 1.950(◦) 1.890(◦) 1.890

Dyn achieves the best fitness value on five out of the 12 datasets, which is
equal to 50%. The significant test shows that Dyn is similar or significantly
better than 30% on all datasets. In comparison with 40%, Dyn is signifi-
cantly better on three datasets while being worse on only one out of the 12
datasets.

The experimental results show that the dynamic model can adapt with
different datasets to select the suitable surrogate training set, which results
in similar or better classification performance while selecting a smaller
number of features than using the whole training set and other static sur-
rogate models on most datasets.

Computational time

In terms of computational time shown in Table 5.3, all surrogate models
including the dynamic model are more efficient than using the original
training set. Particularly, 10% is the most efficient model, which is about
four times faster than using the original training set. 50%, the slowest
static surrogate model is still two times more efficient than using the origi-
nal training set. The dynamic model is a bit more efficient than 50%, which
is also two times faster than using the original training set. This results

5.5. CHAPTER SUMMARY 153

illustrates that the surrogate training set successfully reduces the compu-
tational cost while maintaining or even improving the quality of selected
feature subsets.

5.5 Chapter Summary

This chapter investigates the effect of surrogate models on wrapper PSO-
based feature selection. A surrogate training set is formed by selecting a
subset of informative instances from the original training set. The sur-
rogate set is used to assist PSO quickly estimate promising regions in
the search space before the located regions are further explored using the
original training set. Experimental results show that surrogate training
sets containing from 30% to 50% training instances can help PSO to select
smaller feature subsets with similar or better classification accuracy than
using all features. Based on the static surrogate model, a dynamic model is
developed to automatically select the suitable surrogate training set dur-
ing the evolutionary process. The proposed dynamic model achieves simi-
lar classification accuracy while selecting significantly smaller feature sub-
sets than static surrogate models on most datasets.

This chapter finds that the surrogate training set, which contains a
subset of informative instances, can help wrapper PSO-based feature se-
lection algorithms to find promising regions in a shorter time than us-
ing the whole training set. The surrogate training set brings improve-
ments not only in efficiency but also in effectiveness, where the number
of selected features is significantly reduced while the classification perfor-
mance is maintained or even improved. The quality of surrogate training
set plays an important role during the training process. Particularly, it is
important to select enough informative instances while removing outliers,
which can avoid underfitting, overfitting problems and reduce the num-
ber of selected features. More importantly, the chapter finds that in order
to achieve good performance, the surrogate training set should be consis-

154 CHAPTER 5. SURROGATE MODEL FOR FS

tent with the original training set. This is shown by the promising results
achieved by a dynamic mechanism which updates the surrogate training
set to maintain the consistency.

Although the dynamic surrogate model achieves good results, there
are issues which can be investigated in the future. Firstly, the pool of sur-
rogate training sets used in the dynamic surrogate model can be improved.
Particularly, the ratios between the sizes of the surrogate training sets (in
the pool) and the size of the original training set are fixed on all datasets.
It can be seen that different datasets have their own characteristics such as
the number of noisy instances, so it would be better if the pool is designed
with respect to each dataset. Secondly, the surrogate training sets are built
based on the original feature set. However, during the evolutionary pro-
cess, the feature subset selected by each particle in each iteration can be
different. Therefore, it would be better if the surrogate training sets can be
updated during the evolutionary process with respect to the feature sub-
sets selected by the particles so far. Last but not least, it can be seen that the
surrogate models focus more on reducing the number of selected features
while mainly maintaining the classification performance. It is not an easy
task for a single-objective feature selection algorithm to simultaneously
improve both objectives in feature selection due to the partial conflict be-
tween the two objectives. In the next chapter, a multi-objective algorithm
for feature selection is developed to address the above problem.

Chapter 6

Decomposition-based
Multi-objective Feature Selection

6.1 Introduction

Feature selection has two main objectives which are to minimize the classi-
fication error and the number of selected features. Since the two objectives
are usually in conflict, feature selection can be considered a multi-objective
problem. However, multi-objective feature selection has its own character-
istics such as its highly discontinuous Pareto front, a strong preference for
the objective of minimizing the classification error over reducing the num-
ber of features, and the two objectives are not always in conflict.

As a family of population-based optimization techniques, EC can be
naturally applied to evolve a set of trade-off solutions for multi-objective
problems, including feature selection. A number of different evolutionary
multi-objective methods (EMO) have been proposed. Some methods eval-
uate candidate solutions by using a Pareto dominance relation together
with a crowding distance to maintain the population’s diversity, which are
called Pareto dominance-based algorithms [223]. Non-dominated Sorting
Genetic Algorithm (NSGA-II) [224], Strength Pareto Evolutionary Algo-
rithm (SPEA2) [102], and OMOPSO [104] are well-known representatives

155

156 CHAPTER 6. DECOMPOSITION-BASED MOFS

of this type of EMO algorithms. Pareto dominance-based algorithms work
well on problems having two or three objectives but not on combinatorial
problems. For example, Pareto dominance-based algorithms cannot find
non-dominated solutions on the edges of the Pareto front for knapsack
[225] and feature selection [214] problems. This is probably because the
crowding distance has only a small effect in comparison with the Pareto
dominance in the case of two or three objectives. Thus the population loses
its diversity quickly at the beginning [223].

In contrast to dominance-based approaches, decomposition-based EMO
has good search ability for combinatorial multi-objective problems [226,
227]. It decomposes a multi-objective problem into a number of single ob-
jective sub-problems and recombines the results. Decomposition-based al-
gorithms often achieve better diversity than Pareto dominance-based algo-
rithms, are easier to integrate with local searching mechanisms [223, 228],
and may cope better with problems having many objectives [229, 230, 231]
or complicated Pareto fronts [232, 233]. Thus, decomposition-based EMO
may be more suitable to feature selection than Pareto dominance-based
EMO. MOEA/D (Multi-objective Evolutionary Algorithm based on De-
composition) [31], a recently developed framework for multi-objective op-
timization, is a representative of decomposition-based EMO algorithms,
which has been applied to many multi-objective problems. It decomposes
a multi-objective problem to many scalar sub-problems using a set of weight
vectors, where each weight vector defines a scalar sub-problem whose op-
timal solution will be a Pareto optimal solution to the original (full) prob-
lem. In this chapter, we will improve MOEA/D to deal with characteristics
of multi-objective feature selection.

6.1.1 Chapter Goal

The overall goal of this chapter is to develop a new strategy for MOEA/D
to decompose a multi-objective feature selection problem with an expec-

6.2. PROPOSED ALGORITHMS 157

tation of obtaining a set of non-dominated feature subsets, which has a
wide range of numbers of features and achieves better classification per-
formance than using all features. In the proposed decomposition strat-
egy, instead of using multiple weight vectors, multiple reference points
are used to define the sub-problems. Based on the new decomposition,
static and dynamic reference point methods are developed to identify con-
flicting regions, which are then focused on by allocating more resources to
achieve better Pareto fronts. Both static and dynamic multiple reference
point-based algorithms, called MOEA/D-STAT and MOEA/D-DYN, re-
spectively, are compared with a standard MOEA/D algorithm and three
Pareto dominance-based algorithms on 12 benchmark datasets of varying
difficulties. Specifically, we will investigate:

• whether MOEA/D-STAT and MOEA/D-DYN can evolve feature sub-
sets, which can achieve better performance than using all features,

• whether decomposition with reference points helps MOEA/D to im-
prove the solution’s quality and obtain a better approximation of the
Pareto front than the multiple weight vectors decomposition,

• whether the new decomposition strategy generates more diverse fea-
ture subsets with various numbers of features than the three repre-
sentatives of Pareto dominance-based algorithms: NSGA-II, SPEA2,
and OMOPSO, and

• whether the dynamic reference points strategy can successfully rec-
ognize the conflicting regions and further improve Pareto front’s qual-
ity by allocating more resources to these regions.

6.2 Proposed Algorithms

The section starts by summarizing the characteristics of feature selection
that illustrate difficulties when applying MOEA/D to feature selection. It

158 CHAPTER 6. DECOMPOSITION-BASED MOFS

(a) Balance (b) Towards f1 (c) Towards f2

Figure 6.1: Examples of defining weights in MOEA/D

then shows how to use multiple reference points to decompose a feature
selection problem, followed by two mechanisms (static and dynamic) to
allocate the reference points. Finally, it introduces a repairing mechanism
which helps to ensure that the decomposition’s constraints are not violated
and the population diversity is preserved.

6.2.1 Characteristics of Feature Selection

Feature selection is a multi-objective problem and the shape of its true
Pareto front is unknown. Defining the weight vectors is essential since it
strongly affects the performance of MOEA/D. However, it is not an easy
task due to the dependence on the true Pareto front shape. A simple ex-
ample is illustrated in Fig. 6.1, where the task is to minimize both objec-
tives, f1 and f2, and the green dots show the best solutions for the weight
vectors. When the Pareto front is biased towards f1 (Fig. 6.1(b)) or f2 (Fig.
6.1(c)), a set of evenly distributed weight vectors does not work well. Most
solutions are obtained around the center of the Pareto front, and only a few
solutions around the edge of the Pareto front are found. More weight vec-
tors should be located near the edge to obtain more solutions there. Sev-
eral interesting attempts have been made to adaptively update the weight
vectors based on regions’ densities to preserve the population diversity
[234, 235]. However, most works require an additional computation step
to adaptively adjust the weight vector set. This illustrates that it is not an

6.2. PROPOSED ALGORITHMS 159

(a) Weight vector for FS (b) Not always conflicting

Figure 6.2: Characteristics of multi-objective feature selection

easy task to properly define the weight vectors in multi-objective feature
selection.

In addition, feature selection has a highly discontinuous Pareto front.
The task of feature selection is to reduce the classification error rate (eRate)
while selecting a small portion of the original feature set (fRatio). eRate
measures the ratio between the number of wrongly classified instances
and the total number of instances (m). eRate is discrete and the interval
between the adjacent values (i.e. the granularity) is 1/m. Similarly, fRatio
is the ratio between the number of selected features and the total number
of original features n. fRatio is also discrete and the interval between its
adjacent values is 1/n. Therefore, the Pareto front of feature selection is
highly discontinuous. If weight vectors are used to decompose feature se-
lection, these vectors have to be carefully selected, otherwise, there will
be vectors which do not correspond to any solution on the Pareto front
as shown by the dashed line in Fig. 6.2(a). Furthermore, although both
objectives are in the same range [0,1], they typically have different gran-
ularity due to the difference between 1/m and 1/n. It has been shown
that solving multi-objective problems where the objectives have different
granularity usually results in imbalanced Pareto fronts [236].

The partially conflicting relationship between the two objectives in fea-
ture selection makes it an unusually challenging multi-objective problem.
In feature selection, the classification performance is usually given a higher

160 CHAPTER 6. DECOMPOSITION-BASED MOFS

priority. For example, if a feature set selects 10% more features than the
other feature set but achieves 10% better accuracy, the first set is defi-
nitely preferred. Furthermore, the two objectives are not always in con-
flict. Specifically, removing irrelevant or redundant features from a fea-
ture set may improve the classification performance, which means that
the two objectives are not conflicting in some regions. However, if all the
features in a feature set are relevant and complementary, removing any
feature reduces the classification performance. Only after removing all
irrelevant/redundant features, the two objectives become conflicting. In
other words, there might be a threshold feature ratio beyond which the two
objectives are mostly harmonious. Fig. 6.2(b) illustrates the situation, in
which each point is the best solution with the corresponding feature ratio.
As can be seen in the figure, only the red points can form a Pareto front
while all green points are dominated by the solution at the threshold feature
ratio. It will be more effective for a multi-objective algorithm to allocate
more computational efforts on regions with fRatio below the threshold.
However, the threshold is problem dependent and not easy to identify.

A basic assumption in decomposition-based EMO is that a wide va-
riety of non-dominated solutions can be obtained over the Pareto front
through a set of uniformly distributed weight vectors [105, 237, 238]. How-
ever, it is shown that some parts of a Pareto front can be more difficult to
approximate than others [239]. It is natural to allocate resources (weight
vectors) differently to different sub-problems with respect to their difficul-
ties, which results in better efficiency [240]. A similar question appears
in feature selection where the two objectives are not always conflicting on
the whole objective space. Possibly, better Pareto fronts can be achieved by
putting more efforts on the conflicting regions rather than evenly spend-
ing resources on both conflicting and non-conflicting regions.

Given the characteristics of feature selection, this chapter focuses on
developing a new decomposition mechanism for feature selection, which
can not only reduce the dependency on the Pareto front shape but also

6.2. PROPOSED ALGORITHMS 161

Figure 6.3: Multiple reference points in MOEA/D.

cope well with the front’s high discontinuity and the complex relationship
between its objectives. Particularly, in the following sections, a multiple
reference point-based decomposition strategy is introduced to address the
above characteristics of feature selection.

6.2.2 Decomposition with Multiple Reference Points

In standard MOEA/D, the effectiveness of the weight vector set depends
on the shape of the true Pareto front which is unknown in feature selec-
tion. To reduce the effect of the Pareto front shape to produce more non-
dominated feature subsets with different numbers of features, we use mul-
tiple reference points to decompose multi-objective feature selection prob-
lems instead of multiple weight vectors. Specifically, we allocate a set of R
reference points on the fRatio axis. A reference point placed at position re-
fRatio on the fRatio axis represents an idealized solution with an accuracy
of 100% (i.e. 0% eRate) using exactly (brefRatio × nc) features, where n
is the total number of the original features. In the MOEA/D search, there
will be one individual in the population for each reference point, just as
there is one individual for each weight vector when the problem is de-
composed using weight vectors. Fig. 6.3 shows a set of reference points
marked by blue dots. Using multiple reference points, the multi-objective
feature selection problem is decomposed into a sub-problem for each ref-

162 CHAPTER 6. DECOMPOSITION-BASED MOFS

erence point. The solution of a sub-problem for a reference point at refRatio
is the feature subset, whose size is at most (nref = brefRatio × nc). Such
a feature subset will be on the true Pareto front. The search space of each
sub-problem is smaller than the original one since it is limited by the num-
ber of features defined by the corresponding reference point.

The fitness function of a candidate feature subset S to a sub-problem is
designed as follows.

fitnessS = eRateS + 100×max(|S| − nref , 0) + 0.01× fRatioS (6.1)

where |S| is the number of selected features. The main task of the sub-
problem is to minimize the classification error eRateS , which is the first
component. The second component is a penalty factor to ensure the con-
dition that the number of selected features in S should not exceed nref .
The last component shows a very weak preference for a smaller feature
subset among feature subsets with the same classification error and dif-
ferent numbers of features. The fitness function actually gives a higher
priority to reduce the classification error. The feature subset with a few
more features but achieving significantly higher classification accuracy is
still preferred as long as the number of selected features is not larger than
nref .

A decomposition using weight vectors in a highly discontinuous space
may lead to a sub-problem with no solutions, and may result in a very
poor approximation of the Pareto front. In contrast, a decomposition using
reference points leads to sub-problems that always have a solution from
the Pareto front, and therefore should always give a good approximation
of the true Pareto front. Because of the choice of the fitness function, this
decomposition also handles the strong preference for classification perfor-
mance in feature selection.

The idea of using multiple reference points in MOEA/D has already
been examined in some studies [241, 242]. However, in those algorithms,
the positions of the reference points need to be updated every generation

6.2. PROPOSED ALGORITHMS 163

according to specific mechanisms. In our approach, the reference points
are placed on the fRatio axis prior to the evolutionary process. More-
over, there is no weight vector in the proposed algorithm. These two dif-
ferences make our algorithm simpler than other multiple reference point-
based EMO algorithms.

6.2.3 Reference Points Allocation

The previous section showed how multiple reference points can be used
to effectively decompose feature selection despite its discontinuous Pareto
front. This section describes how the reference points are allocated on the
fRatio axis. One way is to fix locations of the reference points at the begin-
ning, which is called static allocation. A more advanced strategy is to dy-
namically modify the locations, which is capable to detect conflicting/non-
conflicting regions.

Static allocation

In the static allocation, the reference points are uniformly placed on the
fRatio axis and do not change during the search. Specifically, given R ref-
erence points, the position of the ith reference point is (i/R, 0). Notice that
there is no reference point at the location (0, 0) since it defines an empty
feature subset.

In MOEA/D, a neighborhood is an important characteristic, which al-
lows the transfer of information to improve the candidate solutions. For
each sub-problem, its neighbors are sub-problems whose reference points
are close to this sub-problem’s reference point. For example, when the
number of neighbors is 3, the neighborhood of (3/R, 0) includes (2/R, 0),
(3/R, 0) and (4/R, 0). In general, we expect that the solutions of neigh-
boring sub-problems will be similar, which is an important requirement of
MOEA/D.

164 CHAPTER 6. DECOMPOSITION-BASED MOFS

Figure 6.4: Dynamic reference points example: fixed points are green,
moving points are red, dashed line shows the interval that moving points

are located in the corresponding iterations.

Dynamic allocation

In feature selection, the two objectives are not always in conflict, and in
each of such regions, there can be only one solution from the true Pareto
front. Evenly distributing all reference points on the entire domain of the
fRatio axis might limit the performance of MOEA/D since some reference
points are wasted in non-conflicting regions. Therefore, we propose a dy-
namic mechanism that firstly identifies the conflicting and non-conflicting
region, and then allocates more reference points to the conflicting regions.

In order to achieve the above goal, the fRatio axis is divided into I

intervals, all of the same length, 1/I . We assume that there will be one
interval containing the threshold feature ratio, beyond which the two objec-
tives are mostly not conflicting (Fig. 6.2(b)). The R reference points are
divided into F fixed points and M moving points (R = F + M). The F
fixed points are evenly located across the I intervals, shown by the green
points in Fig. 6.4. In the beginning, the M moving points are all located on
the first interval, and the locating mechanism spreads the moving points
while avoiding overlapping between the two types of reference points as
much as possible. After a certain number of iterations defined by the divi-
sion between the maximum number of iterations and the number of inter-
vals, the moving points are re-allocated on the next interval. For example,

6.2. PROPOSED ALGORITHMS 165

in Fig. 6.4, in the first 10 iterations, the three moving points are located
on the first interval. In the next 10 iterations, the moving points are re-
allocated to the second interval and so on. Here, the 10th, 20th... iterations
are called boundary iterations, since on these iterations the moving points
are re-allocated.

The re-allocation process is continued until the algorithm detects that
the two objectives are potentially not conflicting anymore. As can be seen
in Fig. 6.2(b), most solutions in the potentially non-conflicting regions
(green) are dominated by a solution in the conflicting region (red). There-
fore, to determine whether the two objectives are still conflicting in the
ith interval, the solution with the lowest classification error in the interval
is compared with all solutions from the previous interval. If the solution
from the ith interval is dominated by a solution in the previous interval,
the algorithm assumes the two objectives are not conflicting in any further
interval from the ith one. The moving points are then evenly allocated on
all the intervals prior to the ith one and their locations are not changed
until the evolutionary process is finished. An example is given in Fig. 6.4,
where after allocating moving points on the third interval, the algorithm
finds that the solution with the best accuracy obtained by reference points
in the third interval is dominated by one of the solutions from the second
interval. This is an indication that in the regions from the third interval,
the two objectives may not conflict. Thus the algorithm allocates all mov-
ing points on the first and second intervals.

In the evolutionary process, the moving points are re-allocated many
times. However, Giagkiozis et al. [243] showed that dynamic mechanisms
are not always good since they may cause divergence in the population. To
avoid the divergence but still preserve the population’s diversity, the re-
allocation process has to be done carefully. Firstly, the moving points are
re-allocated so that there will be the least overlap with the fixed points be-
cause a diverse allocation usually leads to a diverse solution on the Pareto
front. Secondly, when reallocating a reference point to a new value on the

166 CHAPTER 6. DECOMPOSITION-BASED MOFS

fRatio axis, the algorithm attempts to preserve as much information from
the solutions found for the sub-problem at the previous location of the ref-
erence point. Therefore, the algorithm initializes the reference point with
a feature subset as close as possible to the feature subset from the previous
solution. Since the new location requires a different number of features,
the feature subset from the previous solution must be “repaired”, which
will be discussed in the following section.

It should be noted that the dynamic mechanism does not have to en-
sure that the threshold interval is found exactly. It just needs to estimate
possible regions in which the two objectives are mostly conflicting and
puts more effort (reference points) on these regions. There are still some
fixed reference points locating in possible non-conflicting regions just in
case the estimation is not good enough. In addition, these fixed points on
non-conflicting regions usually have large nref , which may allow different
features to be introduced into solutions for neighboring reference points
with smaller nref values. This helps to prevent premature convergence of
the sub-problems in the conflicting regions.

6.2.4 Repairing Mechanism

All evolutionary algorithms create new candidate solutions out of old so-
lutions. If it is possible for the new candidates to be invalid (by not satis-
fying constraints), then the searching mechanism is in danger of wasting a
lot of search time on exploring infeasible regions of the search space. One
option is to identify and remove any invalid candidates, but this may lose
valuable information contained in the candidates. An alternative option is
to “repair” an invalid candidate by transforming it into a similar valid so-
lution, which has the advantage of retaining information in the candidate,
but may be expensive if the repair mechanism is not efficient.

For sub-problems in the proposed MOEA/D-based feature selection
algorithm, repair is particularly important because each sub-problem cor-
responds to a small part of the search space - the sub-space of features sets

6.2. PROPOSED ALGORITHMS 167

whose size is close to but not more than the nref of the reference point -
and it is difficult to ensure that new candidates are always within the sub-
space. When the searching mechanism creates a candidate feature set S
that is larger than nref , the repairing mechanism must remove (|S| − nref)
features in order to make it valid. The mechanism chooses the (|S| − nref)
features with the lowest individual classification accuracies (which is pre-
calculated at the start of the algorithm). A potential problem with this
approach is that it may remove features that are strongly complementary
to other features, even though they are individually weak. However, this
is not a big problem since the information about complementary features
will usually be retained in the neighboring sub-problems with larger nref
values, and the searching mechanism will be able to re-select the removed
features using information from the neighboring subproblems.

Re-allocating reference points in the dynamic mechanism is even more
prone to creating invalid candidates since re-allocating a reference point
means changing its nref . If a reference point is re-allocated to a smaller
nref value, its current candidate feature subset will most likely be too large
for the new nref , and features will be removed by the same mechanism
described above. If a reference point is re-allocated to a larger nref , its can-
didate feature set is still valid but may be much smaller than the new nref ,
which is highly problematic because it is likely to be similar to the candi-
dates of subproblems with smaller reference points; and therefore will re-
duce the population diversity and limit the ability to explore new feature
combinations. Therefore, the repair process will rank all unselected fea-
tures based on their individual classification accuracies and sequentially
add them to the candidate feature set until its size reaches nref .

6.2.5 Fixing Duplicated Feature Subsets

One problem of the proposed decomposition approach is that feature sub-
sets for reference points with smaller nref values can also become solu-

168 CHAPTER 6. DECOMPOSITION-BASED MOFS

(a) Static multiple reference point-based strategy (MOEA/D-STAT).

(b) Dynamic multiple reference point-based strategy (MOEA/D-DYN).

Figure 6.5: Overall multiple reference point-based MOEA/D algorithms.

tions for reference points with larger nref values. The duplicated feature
subsets might cause a low diversity and premature convergence. In order
to avoid the situation, all duplicated sets from the larger reference points
are repaired. Since in the static strategy, the reference points density on
an interval is not high, randomly adding unselected features to the dupli-
cated subsets should be sufficient. However, due to the dynamic allocation
of moving reference points, the reference points on a particular interval is
denser, so the duplicated feature subset in the dynamic strategy is replaced
by a newly random feature subset.

6.2.6 Overall Proposed Algorithms

Fig. 6.5 shows an overview of the two proposed multiple reference point-
based MOEA/D algorithms for feature selection. The static one is illus-

6.2. PROPOSED ALGORITHMS 169

trated in Fig. 6.5(a), where the blue parts are the essential differences in
comparison with the standard MOEA/D algorithm. Fig. 6.5(b) presents
the dynamic multiple reference points. The difference between the dy-
namic mechanism and the static one is the moving reference points re-
allocation, marked by the orange color. Note that the re-allocation is only
performed when the algorithm has not identified the threshold interval yet.
Once the threshold interval is found, the M moving reference points are al-
located to the conflicting intervals and no further re-allocation is needed.
In this chapter, MOEA/D uses the differential evolutionary (DE) crossover
operator and polynomial mutation operators to generate new candidate
solutions, which is an efficient approach to preserve the population diver-
sity for complicated Pareto fronts [31].

The pseudo-code of the static multiple reference point-based MOEA/D
for feature selection (MOEA/D-STAT) is shown in Algorithm 3. In this
chapter, each individual is represented by a vector of real numbers. The
vector length is equal to the total number of original features. Each entry
corresponds to an original feature and its value determines whether or not
the corresponding feature is selected. Specifically, the feature is chosen if
and only if the entry’s value is greater than a threshold θ. During the
evolutionary process, σ is the probability that a sub-problem selects its T
neighbor sub-problems to update its solution.

In this chapter, the Tchebycheff approach [31] is used as a representa-
tive of standard MOEA/D to compare with the proposed multiple refer-
ence point decomposition, since it usually achieves better results than the
Weighted Sum approach [31] and it does not need to specify a penalty fac-
tor like the Boundary Intersection approach. In addition, the Tchebycheff
approach has good theoretical properties [244].

170 CHAPTER 6. DECOMPOSITION-BASED MOFS

Algorithm 3 : Pesudo-code of MOEA/D-STAT

begin
Calculate the classification accuracy of each feature on the training set;

Initialize R reference points: refPointi = (i× 1

R
, 0) where i = 1, ..., R;

Compute the Euclidean distance between any two reference points;
Find the set of T neighboring reference points of each reference point;

Each ith sub-problem’s neighboring set is denoted Bi;

Randomly initialize the population P = (p1, p2, ..., pR) where pi is the
candidate solution of the ith sub-problem;

while maximum iteration is not reached do
for i=1,...,R do

Ne =

B(i) if rand < σ

P otherwise

Randomly select two solutions pn and pm from Ne;

Apply DE crossover to generate a solution yc. The jth entry of yc is
calculated as:

ycj =

pij + F × (pij − pkj) with probability CR

pij with probability 1− CR

Apply polynomial mutation to generate new solution ym from the
solution yc;

Repair ym if it selects more than nref features;

Update solutions of neighboring sub-problems if ym is better than
the solutions of sub-problems in terms of the fitness values calcu-
lated by Eq. (6.1);

end for
Repair the duplicated feature subsets;
Update the archive set;

end while
Output the archive set;
end

6.3. EXPERIMENT DESIGN 171

6.3 Experiment Design

6.3.1 Benchmark Techniques

The proposed algorithms, MOEA/D-STAT and MOEA/D-DYN, are com-
pared with standard MOEA/D, NSGA-II [224], SPEA2 [102] and OMOPSO
[104] on 12 datasets selected from the UCI machine learning repository
[32]. The datasets are chosen so that they have different numbers of fea-
tures, classes and instances, which can be seen in Table 1.1. In all al-
gorithms, the candidate solutions are evaluated by K-nearest neighbor
(KNN) where K=5, which ensures that KNN might avoid outliers while
still having a good efficiency. Each algorithm is executed for 50 indepen-
dent runs. In each run, the datasets are divided into training and test sets
with the proportions of 70% and 30%, respectively. During the training
process, KNN with 10-fold cross-validation is applied to calculate the clas-
sification error rate on the training set to avoid feature selection bias. The
evolved feature subsets are then evaluated on the test set to obtain their
testing accuracies. These settings are commonly used in feature selection
[186, 245].

In order to examine the performance of the six multi-objective algo-
rithms, the hypervolume indicator [109] and inverted general distance
(IGD) indicator [246] are used. In each run, an algorithm obtains two
Pareto fronts, which are the training Pareto front and the testing Pareto
front. The two fronts contain two sets of non-dominated feature subsets
evaluated on the training and test sets. Therefore, after 50 runs, each algo-
rithm has two sets of metric values based on the training and test sets, re-
spectively. In order to calculate the two indicators, it is necessary to know
the true Pareto front, but it is not known in feature selection. Therefore,
the true Pareto front is approximated by the non-dominated solutions ob-
tained from the union of all solutions generated by the six algorithms in
the 50 independent runs. Here, the hypervolume values of a Pareto front
is calculated by its inverted front, which is implemented in the JMetal

172 CHAPTER 6. DECOMPOSITION-BASED MOFS

package [247]. Therefore, the larger the hypervolume value, the better
the algorithm. A significance test, Wilcoxon test with its significance level
set to 0.05, is used to compare the performance between MOEA/D-STAT,
MOEA/D-DYN, and the benchmark algorithms.

For each algorithm the Pareto front corresponds to the median hyper-
volume value is obtained, which is called a median front. Note that al-
though the median front can give a good visualization, the indicator val-
ues are a more reliable measure to compare different algorithms. The rea-
son is that the indicator values are calculated based on all the solutions
produced by each algorithm in the 50 independent runs, but the median
front in figures only show the median non-dominated solutions, which is
obtained from a single run. We visualized the median fronts to provide a
visual intuition of the patterns.

6.3.2 Parameter settings

Choosing a proper parameter setting for MOEA/D is a difficult task since
it is problem-dependent. After doing several experiments with some sug-
gestions from [31], the parameters are set as below. The number of neigh-
bors T is set to R/10, which is much smaller than the population size to
preserve diversity. However, the smallest value of T is 4 to ensure the di-
versity between neighboring sub-problems. The maximum number of so-
lutions that are replaced by a newly generated subset is set to 1 since it is
recommended that this number should be much smaller than T [31]. Both
MOEA/D algorithms use DE crossover and polynomial mutation, where
the crossover rate is 0.6 and the mutation rate is 1/n. In the DE crossover,
the scaling factor F is 0.7, which lies in the recommended range [0.6,0.8].
The probability of selecting parents from the neighbor sub-problems, σ, is
0.85. The parameter settings of NSGA-II, SPEA2, and OMOPSO are set
to the recommended setting from their original papers, which are default
settings in the JMetal package [247].

6.4. RESULTS 173

The dynamic strategy has two main parameters: M - the number of
moving reference points, I - the number of intervals. Based on experi-
ments, M is set to 0.4 ∗ R, which ensures the significant effect of mov-
ing reference points while maintaining enough fixed reference points to
explore all intervals. If the number of features is less than 20, then the
number of intervals is set to 9. Otherwise, the number of intervals is
set to 4. On datasets having less than 20 features, since the search space
corresponding to each interval it not large, it is fine to have 9 intervals,
which ensures a fine-grained intervals leading to a more accurate estima-
tion of non-conflicting regions. However, on datasets with large num-
bers of features, the search space corresponding to each interval is much
larger, which requires more efforts (time and reference points) to be well
explored. Since the fewer intervals results in larger numbers of iterations
in which the moving points explore an interval, the number of intervals
on datasets with large numbers of features is set to 4, a small value.

The number of nearest neighbors in KNN is set to 5 to avoid noise
instances while still maintaining its efficiency. For all algorithms, the max-
imum number of iterations is 200. The population size is set to the number
of features due to the exponential increase of the search space size with re-
spect to the number of features. However, the population size is bounded
by 200 to avoid a high computational cost. The threshold θ is set to 0.6 so
that the algorithms start with slightly small numbers of features.

6.4 Results

The IGD values of the six algorithms on the training and test sets are
shown in Tables 6.1 and 6.2, respectively. Tables 6.3 and 6.4 show the aver-
age hypervolume values of each algorithm on the training and test sets, re-
spectively. The two signs beside the average value of the four benchmark
algorithms show results of the significance test comparing between them
and the two proposed algorithms, MOEA/D-STAT and MOEA/D-DYN,

174 CHAPTER 6. DECOMPOSITION-BASED MOFS

respectively. “↑”/ “↓” / “◦” mean that MOEA/D-STAT or MOEA/D-DYN
is significantly better/worse than or similar to the corresponding bench-
mark algorithm. For MOEA/D-STAT, the single sign on its column shows
the comparison between it and MOEA/D-DYN.

The median fronts of the algorithms on the training and test sets are
shown in Figs. 6.6 and 6.7, respectively. In each sub-figure, the two num-
bers inside the brackets show the total number of original features and
the training or testing error when using all features. The horizontal and
vertical axes represent fRatio and eRate, respectively. Six datasets are se-
lected as representatives of small (Australian, Vehicle), medium (Musk1,
Arrhythmia) and large (Madelon, Multiple Features) datasets. The trends
of Pareto fronts are similar on the other datasets.

6.4.1 Comparison with Using All Features

As can be seen from Figs. 6.6 and 6.7, on all datasets, the feature sub-
sets evolved by both MOEA/D-STAT and MOEA/D-DYN contain at most
60% original features, and select at least three feature subsets, which are
better than using all features on both training and test sets. Especially,
on Arrhythmia and Madelon, all subsets selected by the two algorithms
achieve better classification performance than using all features while se-
lecting less than 10% original features.

The results suggest that on all datasets, applying multiple reference
points to MOEA/D-based feature selection can select a small number of
features while still achieving better performance than using all features.

6.4.2 MOEA/D-STAT vs Other EMO Methods

On the training set, as shown in Table 6.1, in terms of the IGD indicator,
in most cases all other algorithms are significantly worse than the static
multiple-reference points strategy. Only on the Hillvalley, NSGAII and
SPEA2 achieve better IGD values, while OMOPSO and standard MOEA/D
have the same IGD values as MOEA/D-STAT on at most three out of

6.4. RESULTS 175
Ta

bl
e

6.
1:

IG
D

on
tr

ai
ni

ng
se

ts
.

D
at

as
et

N
SG

A
II

SP
EA

2
O

M
O

PS
O

M
O

EA
/D

M
O

EA
/D

-S
TA

T
M

O
EA

/D
-D

Y
N

W
in

e
0.

04
9±

0.
01

0
(↓
↓)

0.
03

6±
0.

01
1

(↓
↓)

0.
02

7±
0.

00
8

(↓
↓)

0.
03

6±
0.

01
1

(↓
↓)

0.
01

8±
0.

01
3

(◦
)

0.
02

3±
0.

01
1

A
us

tr
al

ia
n

0.
02

9±
0.

01
5

(↓
↓)

0.
03

0±
0.

01
3

(↓
↓)

0.
01

0±
0.

01
0

(↓
↓)

0.
02

4±
0.

01
6

(↓
↓)

0.
00

3±
0.

00
7

(◦
)

0.
00

2±
0.

00
5

Ve
hi

cl
e

0.
02

1±
0.

01
1

(↓
↓)

0.
02

6±
0.

01
0

(↓
↓)

0.
01

5±
0.

01
0

(↓
↓)

0.
02

0±
0.

01
2

(↓
↓)

0.
00

4±
0.

00
3

(↑
)

0.
00

6±
0.

00
4

G
er

m
an

0.
05

6±
0.

01
5

(↓
↓)

0.
05

1±
0.

01
7

(↓
↓)

0.
04

5±
0.

01
7

(↓
↓)

0.
03

7±
0.

02
1

(↓
↓)

0.
02

3±
0.

01
8

(◦
)

0.
02

5±
0.

02
1

W
BC

D
0.

01
2±

0.
01

1
(↓
↓)

0.
01

2±
0.

01
1

(↓
↓)

0.
00

7±
0.

01
0

(◦
↓)

0.
01

5±
0.

01
0

(↓
↓)

0.
00

9±
0.

00
9

(↓
)

0.
00

0±
0.

00
2

Io
no

sp
he

re
0.

00
9±

0.
00

8
(↓
↓)

0.
00

8±
0.

00
8

(↓
↓)

0.
00

2±
0.

00
2

(◦
↓)

0.
00

7±
0.

00
5

(↓
↓)

0.
00

1±
0.

00
3

(↓
)

0.
00

0±
0.

00
0

So
na

r
0.

01
6±

0.
00

3
(↓
↓)

0.
01

5±
0.

00
3

(↓
↓)

0.
01

5±
0.

00
3

(↓
↓)

0.
01

4±
0.

00
3

(↓
↓)

0.
01

0±
0.

00
2

(↓
)

0.
00

9±
0.

00
3

H
ill

va
lle

y
0.

00
5±

0.
00

2
(↑
↓)

0.
00

6±
0.

00
2

(↑
↓)

0.
00

7±
0.

00
3

(◦
↓)

0.
00

6±
0.

00
1

(◦
↓)

0.
00

6±
0.

00
1

(↓
)

0.
00

5±
0.

00
1

M
us

k1
0.

00
8±

0.
00

1
(↓
↓)

0.
00

7±
0.

00
2

(◦
◦)

0.
01

0±
0.

00
2

(↓
↓)

0.
00

7±
0.

00
1

(◦
◦)

0.
00

7±
0.

00
1

(↑
)

0.
00

7±
0.

00
1

A
rr

hy
th

m
ia

0.
00

3±
0.

00
1

(↓
↓)

0.
00

2±
0.

00
1

(↓
↓)

0.
00

3±
0.

00
1

(↓
↓)

0.
00

2±
0.

00
0

(↓
↓)

0.
00

2±
0.

00
0

(↓
)

0.
00

2±
0.

00
0

M
ad

el
on

0.
02

4±
0.

00
1

(↓
↓)

0.
02

3±
0.

00
1

(↓
↓)

0.
01

8±
0.

00
5

(↓
↓)

0.
01

3±
0.

00
3

(↓
↓)

0.
00

7±
0.

00
1

(↓
)

0.
00

4±
0.

00
1

M
ul

ti
pl

eF
ea

tu
re

s
0.

00
8±

0.
00

1
(↓
↓)

0.
00

7±
0.

00
1

(↓
↓)

0.
01

0±
0.

00
3

(↓
↓)

0.
00

4±
0.

00
1

(↓
↓)

0.
00

3±
0.

00
0

(↓
)

0.
00

1±
0.

00
0

Ta
bl

e
6.

2:
IG

D
on

te
st

se
ts

.

D
at

as
et

N
SG

A
II

SP
EA

2
O

M
O

PS
O

M
O

EA
/D

M
O

EA
/D

-S
TA

T
M

O
EA

/D
-D

Y
N

W
in

e
0.

08
1±

0.
02

0
(↓
↓)

0.
01

4±
0.

01
5

(◦
↓)

0.
00

9±
0.

00
2

(◦
◦)

0.
01

8±
0.

01
4

(↓
↓)

0.
00

9±
0.

00
6

(◦
)

0.
00

8±
0.

00
0

A
us

tr
al

ia
n

0.
04

4±
0.

03
1

(↓
↓)

0.
04

9±
0.

03
4

(↓
↓)

0.
02

4±
0.

01
5

(↓
↓)

0.
03

7±
0.

02
9

(↓
↓)

0.
01

6±
0.

00
7

(◦
)

0.
01

8±
0.

00
4

Ve
hi

cl
e

0.
02

3±
0.

01
1

(↓
◦)

0.
02

8±
0.

01
5

(↓
◦)

0.
02

5±
0.

01
2

(↓
◦)

0.
02

6±
0.

01
4

(↓
◦)

0.
01

8±
0.

01
0

(↑
)

0.
02

3±
0.

01
1

G
er

m
an

0.
07

5±
0.

01
6

(◦
◦)

0.
07

7±
0.

01
7

(◦
◦)

0.
08

0±
0.

01
8

(↓
↓)

0.
07

4±
0.

02
2

(◦
◦)

0.
07

0±
0.

02
8

(◦
)

0.
06

9±
0.

02
5

W
BC

D
0.

00
7±

0.
00

9
(◦
↓)

0.
00

8±
0.

01
1

(◦
↓)

0.
00

3±
0.

00
3

(↑
◦)

0.
00

8±
0.

01
0

(◦
↓)

0.
00

7±
0.

00
9

(↓
)

0.
00

3±
0.

00
2

Io
no

sp
he

re
0.

02
4±

0.
00

6
(↑
↑)

0.
02

7±
0.

00
5

(◦
↑)

0.
02

7±
0.

00
4

(◦
↑)

0.
02

4±
0.

00
6

(↑
↑)

0.
02

8±
0.

00
3

(◦
)

0.
02

9±
0.

00
0

So
na

r
0.

03
2±

0.
00

9
(◦
◦)

0.
02

9±
0.

00
6

(◦
◦)

0.
02

8±
0.

00
7

(↑
↑)

0.
02

9±
0.

00
7

(◦
◦)

0.
03

1±
0.

00
5

(◦
)

0.
03

1±
0.

00
5

H
ill

va
lle

y
0.

01
1±

0.
00

4
(↑
◦)

0.
01

1±
0.

00
2

(↑
↑)

0.
01

3±
0.

00
3

(↑
◦)

0.
01

3±
0.

00
4

(↑
◦)

0.
01

5±
0.

00
4

(↓
)

0.
01

3±
0.

00
4

M
us

k1
0.

02
1±

0.
00

3
(↓
↓)

0.
02

0±
0.

00
3

(↓
↓)

0.
02

2±
0.

00
4

(↓
↓)

0.
01

8±
0.

00
3

(↓
↓)

0.
01

5±
0.

00
4

(◦
)

0.
01

5±
0.

00
4

A
rr

hy
th

m
ia

0.
00

5±
0.

00
1

(↓
↓)

0.
00

5±
0.

00
1

(◦
↓)

0.
00

6±
0.

00
2

(↓
↓)

0.
00

4±
0.

00
1

(◦
◦)

0.
00

5±
0.

00
1

(↓
)

0.
00

4±
0.

00
1

M
ad

el
on

0.
04

8±
0.

00
1

(↓
↓)

0.
04

7±
0.

00
3

(↓
↓)

0.
03

6±
0.

01
1

(↓
↓)

0.
01

9±
0.

00
6

(↓
↓)

0.
01

4±
0.

00
2

(↓
)

0.
00

8±
0.

00
1

M
ul

ti
pl

eF
ea

tu
re

s
0.

01
1±

0.
00

1
(↓
↓)

0.
01

0±
0.

00
1

(↓
↓)

0.
01

4±
0.

00
3

(↓
↓)

0.
00

5±
0.

00
1

(↓
↓)

0.
00

5±
0.

00
1

(↓
)

0.
00

1±
0.

00
0

176 CHAPTER 6. DECOMPOSITION-BASED MOFS
Table

6.3:H
ypervolum

e
on

training
sets

D
ataset

N
SG

A
II

SPEA
2

O
M

O
PSO

M
O

EA
/D

M
O

EA
/D

-STA
T

M
O

EA
/D

-D
Y

N

W
ine

0.751±
0.056

(↓
↓)

0.870±
0.020

(↓
↓)

0.876±
0.001

(↓
↓)

0.872±
0.005

(↓
↓)

0.877±
0.001

(◦)
0.877±

0.001
A

ustralian
0.778±

0.015
(↓
↓)

0.782±
0.008

(↓
↓)

0.794±
0.003

(◦
↓)

0.783±
0.019

(↓
↓)

0.794±
0.002

(↓)
0.795±

0.000
Vehicle

0.795±
0.009

(↓
↓)

0.794±
0.010

(↓
↓)

0.801±
0.002

(◦
↓)

0.796±
0.006

(↓
↓)

0.801±
0.001

(↓)
0.802±

0.001
G

erm
an

0.709±
0.013

(↓
↓)

0.707±
0.016

(↓
↓)

0.717±
0.004

(◦
↓)

0.713±
0.006

(↓
↓)

0.718±
0.004

(↓)
0.719±

0.003
W

BC
D

0.916±
0.009

(↓
↓)

0.917±
0.006

(↓
↓)

0.919±
0.001

(◦
↓)

0.918±
0.002

(↓
↓)

0.920±
0.001

(↓)
0.920±

0.000
Ionosphere

0.899±
0.014

(↓
↓)

0.900±
0.017

(↓
↓)

0.910±
0.005

(↓
↓)

0.901±
0.010

(↓
↓)

0.912±
0.003

(↓)
0.912±

0.000
Sonar

0.871±
0.014

(↓
↓)

0.867±
0.013

(↓
↓)

0.867±
0.012

(↓
↓)

0.869±
0.012

(↓
↓)

0.887±
0.007

(◦)
0.889±

0.008
H

illvalley
0.617±

0.007
(↓
↓)

0.616±
0.004

(↓
↓)

0.611±
0.007

(↓
↓)

0.614±
0.007

(↓
↓)

0.620±
0.004

(↓)
0.625±

0.003
M

usk1
0.919±

0.010
(↓
↓)

0.924±
0.007

(↓
↓)

0.898±
0.014

(↓
↓)

0.929±
0.005

(↓
↓)

0.933±
0.004

(◦)
0.932±

0.004
A

rrhythm
ia

0.940±
0.006

(↓
↓)

0.949±
0.005

(↓
↓)

0.940±
0.012

(↓
↓)

0.955±
0.002

(↓
↓)

0.957±
0.001

(◦)
0.957±

0.001
M

adelon
0.874±

0.011
(↓
↓)

0.883±
0.009

(↓
↓)

0.863±
0.018

(↓
↓)

0.849±
0.011

(↓
↓)

0.891±
0.004

(↓)
0.896±

0.003
M

ultipleFeatures
0.951±

0.007
(↓
↓)

0.960±
0.008

(↓
↓)

0.933±
0.016

(↓
↓)

0.974±
0.006

(↓
↓)

0.991±
0.000

(↓)
0.994±

0.000

Table
6.4:H

ypervolum
e

on
testsets.

D
ataset

N
SG

A
II

SPEA
2

O
M

O
PSO

M
O

EA
/D

M
O

EA
/D

-STA
T

M
O

EA
/D

-D
Y

N

W
ine

0.754±
0.058

(↓
↓)

0.894±
0.029

(↓
↓)

0.904±
0.003

(◦
◦)

0.890±
0.019

(↓
↓)

0.903±
0.006

(◦)
0.904±

0.000
A

ustralian
0.747±

0.061
(↓
↓)

0.739±
0.065

(↓
↓)

0.781±
0.022

(↓
↓)

0.760±
0.055

(↓
↓)

0.791±
0.006

(◦)
0.790±

0.004
Vehicle

0.791±
0.011

(↓
↓)

0.788±
0.012

(↓
↓)

0.797±
0.004

(↑
◦)

0.793±
0.009

(◦
↓)

0.795±
0.004

(↓)
0.798±

0.003
G

erm
an

0.669±
0.022

(↓
↓)

0.671±
0.018

(↓
↓)

0.678±
0.010

(◦
◦)

0.673±
0.014

(↓
↓)

0.680±
0.007

(◦)
0.680±

0.006
W

BC
D

0.909±
0.012

(◦
↓)

0.908±
0.014

(◦
↓)

0.914±
0.001

(↑
◦)

0.908±
0.012

(◦
↓)

0.912±
0.005

(↓)
0.914±

0.000
Ionosphere

0.852±
0.019

(↑
↑)

0.845±
0.015

(◦
◦)

0.844±
0.011

(◦
◦)

0.851±
0.016

(↑
↑)

0.842±
0.009

(◦)
0.839±

0.000
Sonar

0.774±
0.031

(↓
↓)

0.782±
0.022

(↓
↓)

0.790±
0.027

(◦
◦)

0.790±
0.027

(◦
◦)

0.798±
0.021

(◦)
0.793±

0.022
H

illvalley
0.595±

0.013
(↑
◦)

0.598±
0.010

(↑
◦)

0.589±
0.012

(◦
↓)

0.593±
0.012

(◦
◦)

0.590±
0.010

(↓)
0.598±

0.011
M

usk1
0.846±

0.019
(↓
↓)

0.857±
0.015

(↓
↓)

0.834±
0.025

(↓
↓)

0.860±
0.013

(↓
↓)

0.868±
0.010

(◦)
0.872±

0.010
A

rrhythm
ia

0.934±
0.007

(↓
↓)

0.943±
0.005

(↓
↓)

0.935±
0.012

(↓
↓)

0.951±
0.002

(↓
↓)

0.952±
0.002

(◦)
0.952±

0.002
M

adelon
0.860±

0.011
(↓
↓)

0.869±
0.009

(↓
↓)

0.857±
0.016

(↓
↓)

0.849±
0.011

(↓
↓)

0.883±
0.004

(↓)
0.886±

0.004
M

ultipleFeatures
0.947±

0.007
(↓
↓)

0.956±
0.008

(↓
↓)

0.929±
0.016

(↓
↓)

0.971±
0.006

(↓
↓)

0.987±
0.001

(↓)
0.990±

0.001

6.4. RESULTS 177

●MOEAD SPEA2 NSGAII OMOPSO STAT DYN

●

●

● ●

0.16

0.20

0.24

0.28

0.32

0.10 0.15 0.20 0.25
fRatio

eR
at

e

Australian (14−0.335)
●

●

●

●

● ●
●

0.150

0.175

0.200

0.225

0.250

0.2 0.4 0.6
fRatio

eR
at

e

Vehicle (18−0.185)

●

●

●

● ●

●
● ● ●● ● ● ●● ●

● ● ●● ●● ● ● ● ● ●

0.1

0.2

0.3

0.0 0.1 0.2 0.3
fRatio

eR
at

e

Musk1 (166−0.177)

●

●

●

●
● ●

●
●

●●

●
●● ●● ● ● ●

0.04

0.05

0.06

0.07

0.00 0.05 0.10 0.15
fRatio

eR
at

e

Arrhythmia (278−0.065)
●

●

●

●

●

●

●
●●● ● ●● ● ●● ● ●●0.1

0.2

0.3

0.4

0.00 0.03 0.06 0.09
fRatio

eR
at

e

Madelon (500−0.294)
●

●

●

●
●
●●
●

●●●
●●●

● ●●●●●●●●● ● ●
0.00

0.03

0.06

0.09

0.0 0.1 0.2 0.3 0.4
fRatio

eR
at

e

MultipleFeatures (649−0.010)

Figure 6.6: Median fronts on training sets.

●

●

●

0.12

0.16

0.20

0.24

0.10 0.15 0.20 0.25
fRatio

eR
at

e

Australian (14−0.300)

●

●

●
0.15

0.20

0.25

0.30

0.1 0.2 0.3 0.4 0.5
fRatio

eR
at

e

Vehicle (18−0.159)

●

●

●

●

●
●

●

●

●
●0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3
fRatio

eR
at

e

Musk1 (166−0.161)

●

●

●
●

●

●

0.05

0.06

0.00 0.03 0.06 0.09
fRatio

eR
at

e

Arrhythmia (278−0.062)
●

●

●

●

●
●
●

●
●

●● ● ●0.1

0.2

0.3

0.4

0.000 0.025 0.050 0.075 0.100 0.125
fRatio

eR
at

e

Madelon (500−0.291)
●

●

●

●
●

●

●●● ●●
●

0.03

0.06

0.09

0.0 0.1 0.2 0.3
fRatio

eR
at

e

MultipleFeatures (649−0.014)

Figure 6.7: Median fronts on test sets.

178 CHAPTER 6. DECOMPOSITION-BASED MOFS

the 12 datasets. In terms of hypervolume values as shown in Table 6.3,
MOEA/D-STAT is significantly better than NSGAII, SPEA2 and standard
MOEA/D on all datasets, as shown in Table 6.3. Among the benchmark
algorithms, SPEA2 achieves the best hypervolume values on the medium
and large datasets while OMOPSO has the best performance on the small
datasets (similar performance with MOEA/D-STAT on four small datasets).
But when there is a large number of features, MOEA/D-STAT significantly
outperforms all other benchmark algorithms. The possible reasons can be
seen in Fig. 6.6. On the small datasets, MOEA/D-STAT evolves the simi-
lar shapes with the four benchmark algorithms, but for the same number
of features, MOEA/D-STAT tends to achieve lower classification errors. It
is mainly because the decomposition along with feature ratios makes the
search space of each sub-problem much smaller than the original search
space. Although the upper bound feature ratio limits the number of fea-
tures, MOEA/D-STAT still allows to replace worse features in the current
subset by better features through communications with its neighboring
sub-problems. On the larger datasets such as MultipleFeatures, the fronts
become significantly different. Dominance-based algorithms quickly lose
their diversities and their Pareto fronts focus mostly on the middle of
the objective search space. OMOPSO is the worst dominance-based al-
gorithms while SPEA2 and NSGAII have very similar Pareto fronts. On
the other hand, decomposition-based algorithms achieve much more di-
verse and evenly distributed Pareto-front. Even standard MOEA/D’s so-
lutions have many more different feature ratios than NGSAII and SPEAII.
MOEA/D-STAT also evolves as diverse Pareto fronts as standard MOEA/D.
However, given the same number of features, MOEA/D-STAT always
achieve better classification error. This is the effect of the fitness func-
tion in the new decomposition strategy, where a higher priority is given to
the classification error. Therefore, in MOEA/D-STAT, there is much more
pressure on the classification error than in standard MOEA/D.

On the test sets, as can be seen in Tables 6.2 and 6.4, on at most only

6.4. RESULTS 179

two out of the 12 datasets, MOEA/D-STAT is worse than the three bench-
mark algorithms, except for OMOPSO, which is significantly worse than
MOEA/D-STAT on eight datasets. On the five largest datasets, MOEA/D-
STAT mostly outperforms the four benchmark algorithms. Fig. 6.7 shows
that the median fronts evolved by MOEA/D-STAT are usually more di-
verse than the ones of dominance-based algorithms. Specifically, on Made-
lon datasets, the median front of MOEA/D-STAT contains 13 solutions
with feature ratios ranging from 0.002 to 0.05. The three dominance-based
algorithms have only one or two solutions on their median fronts and most
classification errors achieved by the dominance-based algorithms are at-
tained by MOEA/D-STAT.

The experimental results show that using multiple reference points
generates better Pareto fronts than using multiple weight vectors. Since
the fitness function in the proposed decomposition focuses more on reduc-
ing the classification error, its classification performance is significantly
better than standard MOEA/D. The new decomposition not only pre-
serves the higher diversity over dominance-based algorithms but also im-
proves the diversity over using multiple weight vectors since it ensures
that each sub-problem, defined by a reference point, corresponds to ex-
actly one solution on the true Pareto front.

6.4.3 MOEA/D-DYN vs Others

In Tables 6.1 - 6.4, the second sign in the brackets shows the significant
test results, which compares between the four benchmark algorithms with
MOEA/D-DYN. On the training set, in terms of the hypervolume indi-
cator, NSGAII, SPEA2, OMOPSO and MOEA/D are significantly worse
than MOEA/D-DYN on all datasets. MOEA/D-STAT achieves similar hy-
pervolume as MOEA/D-DYN on four datasets while being significantly
worse on all other eight datasets. In terms of IGD, on most cases the
other algorithms are significantly worse than MOEA/D-DYN, except for

180 CHAPTER 6. DECOMPOSITION-BASED MOFS

that NSGAII, SPEA2 and MOEA/D-STAT outperform MOEA/D-DYN on
only one out of the 12 datasets. Similarly, on the test sets, MOEA/D-DYN
is worse than the other algorithms on at most two datasets. The superior
to MOEA/D-STAT shows that the dynamic mechanism in MOEA/D-DYN
does not affect the algorithm’s convergence, which preserves the high per-
formance of the new decomposition using multiple reference points.

Now we will focus more on analyzing the effect of the dynamic mech-
anism. As shown in Tables 6.1-6.4, MOEA/D-DYN achieves significantly
better IGD/hypervolume values than MOEA/D-STAT. The significant im-
provement is a result of improvement in both classification performance
and Pareto-fornt diversity, which can be seen in Fig. 6.6. On the small
datasets such as Australian and Vehicle, MOEA/D-DYN’s fronts have the
same length as MOEA/D-STAT but given the same feature ratio, MOEA/D-
DYN’s classification error is always lower. On medium datasets, MOEA/D-
DYN’s fronts become shorter because the solution with the lowest accu-
racy already dominates all other MOEA/D-STAT’s solutions, which se-
lect more features. This pattern is clearly shown on Arrhythmia in Fig.
6.6. On the two large datasets, Madelon and Multiple Features, the fronts
evolved by MOEA/D-DYN is even much shorter than MOEA/D-STAT’s
ones. However, shorter fronts do not mean MOEA/D-DYN’s solution sets
are less diverse than the solutions found by MOEA/D-STAT. Let take the
median fronts on Multiple Features as an example. MOEA/D-DYN’s me-
dian front contains 13 feature subsets, which have feature ratios varying
in the range [0.002, 0.042]. Although MOEA/D-STAT’s feature ratios have
a longer range, [0.004, 0.311], its median front has only 11 feature subsets.
Despite selecting more features, MOEA/D-STAT’s best feature subset in
terms of the classification error is still worse than that of MOEA/D-DYN.
It can be seen that the dynamic mechanism does not waste resources (refer-
ence points) on non-conflicting regions. It puts more effort on the conflict-
ing regions, which results in more evenly distributed Pareto fronts with
better classification performance given the same number of features.

6.4. RESULTS 181

●●● SPEA2 STAT DYN

●
●

●●

●
● ●

●●
● ●● ●

● ●
●

●●●
●

●
●

●●●●
●

●

●● ●
●●

●
●

● ●
● ●

●
● ●●

●

●

● ● ●
●

●
●
● ●

●
●●

●●●

●
● ●●

●●
●

●

●

●
●

●
●

●●●
●● ●●

● ●
●

●

● ●

●
●

●●● ●

●

●

●

●
●

●

●

●
●●● ●

●

●●
●

● ●
●

●

●

●
●● ●

●
●●

●
●

●

●●
●● ●● ●●● ●

●●
●●

●
●●

●

●

●
● ●

●
●

●

●
● ●● ●●

● ●
●● ●●

● ●● ●
●

●
● ●

●
●

●
●

●

●●
●

●

●●

●
● ● ●●
●

●

● ●

●
●●●●

●●

●●
● ●● ●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRatio

eR
at

e
Iteration 40

●
●
●●

●
● ●

●●
● ●● ●
● ●

●

●●● ●

●
●
●●●●

●

●

●● ●
●●

●
●

● ●
● ●

●
● ●●

●

●

● ● ●
●

●
●
● ●

●
●●

●●●

●
● ●●

●●
●

●

●

●
●
●

●
●●●

●● ●●
● ●

●
●

● ●

●
●

●●● ●

●

●

●

●
●

●

●

●
●●● ●

●

●●
●

● ●
●

●

●

●
●● ●

●
●●

●
●

●

●●
●● ●● ●●● ●

●●
●●

●
●●

●

●

●
● ●

●
●

●

●
● ●● ●●

● ●
●● ●●
● ●● ●

●

●
● ●

●
●

●
●

●

●●
●

●

●●

●
● ● ●●
●

●

● ●

●
●●●●

●●

●●
● ●● ●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRate

eR
at
e

Iteration 40

● ●●●●● ●●●
●●● ●●

●
● ●●●●●
●●

●

●●
●

● ●

●
● ●● ●

●●

●●
●

●
●
●

●
●

●

●● ●● ●
●

●● ●
● ●

● ●
●●●●

●
●● ●

●●
●

●

●●

●

● ●
●●

●

●
●

● ●

●

●●

●

●●
●●

●

●●
●

●
●●●●● ●

●
●

●
●

●
●

●●

●
●
● ●●●

●
●

●●●●
● ●
●

● ●●● ●
● ●

●

●●●
●●

●

● ●●

●

●●●●
●
●

●

●

●
●

●●●●
●

● ●●
●

●● ●
●● ●● ●●●● ● ● ●

●● ●●

●

●
●

●

●

●●
●

● ●●
●●

● ●

●

●
●

●
● ●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRatio

eR
at

e

Iteration 100

● ●●●●● ●●●
●●● ●●

●
● ●●●

●●
●●

●

●●●

● ●

●
● ●● ●

●●

●●
●

●
●
●

●
●

●

●● ●● ●
●
●● ●

● ●
● ●

●●●●

●
●● ●

●●
●
●

●●

●

● ●
●●

●

●
●

● ●

●

●●

●

●●
●●

●

●●
●

●
●●●●● ●

●
●

●
●
●

●
●●

●
●
● ●●●

●
●

●●●●
● ●
●

● ●●● ●
● ●

●

●●●
●●

●

● ●●

●

●●●●
●
●

●

●

●
●

●●●●
●

● ●●
●

●● ●
●● ●● ●●●● ● ● ●

●● ●●

●

●
●

●

●

●●
●
● ●●

●●
● ●

●

●
●

●
● ●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRate

eR
at
e

Iteration 100

● ●
●
●●● ●●

●●●
●
● ●

●
●●●

● ●●●
●
●●●

●●●
●●

●

●●
●●
●●

●
●

●
● ●●
●

●
●●

●●
●●

●
● ●●

●●
●
●
● ●●●●●

●●●
●

●●●●● ●
●

●●●●●● ●●●
●
●

●
●

●●
●

●
●●●●

●
● ●●●●●●●●● ●
●●●●● ●●

●
●
●●

●
●●

●●●
●●

●● ●●
●

●
●●●

●

●
● ●●●●

●
●
●

●●
●●●●●

●●●
●

●
●

●●
●
●●

●
●● ●

●
●
●●
●

●● ●
●●● ●●● ●●

●
●● ●

●
●●
●●
●●

●●
●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRatio

eR
at

e

Iteration 160

● ●
●
●●● ●●

●●●
●
● ●
●
●●●

● ●●●
●
●●●
●●●
●●

●

●●
●●
●● ●

●
●
● ●●
●
●

●●
●●
●●

●
● ●●
●●
●
●
● ●●●●●
●●●
●

●●●●● ●
●
●●●●●● ●●●
●
●

●
●

●●
●

●
●●●●

●
● ●●●●●●●●● ●
●●●●● ●●

●
●
●●

●
●●

●●●
●●

●● ●●
●

●
●●●

●

●
● ●●●●
●

●
●

●●
●●●●●
●●●
●

●
●

●●
●
●●
●

●● ●
●

●
●●
●

●● ●
●●● ●●● ●●

●
●● ●

●
●●
●●
●●
●●

●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRate

eR
at
e

Iteration 160

●●
●●●●●●●●●●●●●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRatio

eR
at

e
Iteration 200 (Final)

●●
●●●●●●●●●●●●●

0.000

0.025

0.050

0.075

0.100

0.125

0.00 0.25 0.50 0.75 1.00
fRate

eR
at
e

Iteration 200 (Final)

Figure 6.8: Evolutionary processes of the 1st run on MultipleFeatures.

6.4.4 Further Analysis on the Evolutionary Processes

In this section, the search behaviors of different algorithms are examined
through their evolutionary processes. SPEA2 is selected as a representa-
tive of dominance-based algorithms since it achieves the best performance
among the dominance-based algorithms. The largest dataset, Multiple-
Features, is selected to show the differences between the three algorithms
clearly.

The three evolutionary processes are shown in Fig. 6.8. There are 4
sub-figures, which corresponds to the populations at the 40th, 100th, 160th

and 200th, the final iteration, respectively. Note that all algorithms start

182 CHAPTER 6. DECOMPOSITION-BASED MOFS

from the same initialization, but it is not shown in the figure to save space.
Since there is too much overlapping in the center of Pareto fronts, we zoom
in these parts and put the zoomed figure on the top right of each sub-
figure. It can be seen that, at the 40th iteration, SPEA2 quickly loses its
diversity due to the dominance ranking and it mainly searches on a very
small area of the objective space. In the following iterations, its diversity
is gradually worse, which finally results in a low-diverse Pareto front. On
the other hand, two multiple reference point-based MOEA/D algorithms,
MOEA/D-STAT and MOEA/D-DYN, maintain their diversities through
the whole process. However, their search behaviors are quite different.
It can be seen that since MOEA/D-STAT evenly distributed its reference
points on the fRatio axis, its population spreads on the whole axis. How-
ever, the solutions within the small fRatio (less than 0.5) is denser since
some sub-problems with a large nref values can take subsets with low
fRatio as their solutions. For MOEA/D-DYN, it first starts focusing on
the first interval which has the feature ratio ranging in [0, 0.25]. There-
fore, in the first figure, most solutions are in this range. In the following
boundary iterations, MOEA/D-DYN shifts its focus to the next interval.
As shown in the second figure, at the 100th iteration, MOEA/D-DYN starts
focusing on the third interval by allocating more reference points there.
It seems that after a number of iterations, it finds that the third interval
is a threshold interval, beyond which the two objectives are possibly no
longer conflicting. Therefore, MOEA/D-DYN allocates all moving refer-
ence points on the first and second intervals as shown in the fourth figure,
without further reallocation. Note that MOEA/D-DYN still leaves some
reference points on the other intervals in case the threshold interval de-
tection is not accurate. In the final figures, it is shown that the solutions
of MOEA/D-DYN on the first range is much more diverse than solutions
evolved by MOEA/D-STAT. In addition, MOEA/D-DYN can achieve as
good classification accuracies as MOEA/D-STAT but with smaller num-
bers of features.

6.5. CHAPTER SUMMARY 183

6.5 Chapter Summary

In this paper, a new decomposition for MOEA/D is proposed to solve fea-
ture selection problems. Instead of using multiple weight vectors, feature
selection is decomposed by a set of reference points allocated along the
feature ratio axis. The new decomposition is designed to deal with the
highly discontinuity in Pareto fronts of feature selection problems. Sec-
ondly, a dynamic reference point strategy is proposed to detect and al-
locate more resource to the conflicting regions. The experimental results
show that the two multiple reference point algorithms can evolve more
diverse Pareto fronts than the four benchmark algorithms, including NS-
GAII, SPEA2, OMOPSO and standard MOEA/D. The multiple reference
point decomposition also assists MOEA/D to achieve better classification
accuracy than using weight vectors since there is more search pressure
on improving the classification performance. The dynamic mechanism al-
lows MOEA/D to focus more on the conflicting regions, which results in
more diverse Pareto fronts with lower classification errors than the static
reference points.

This chapter finds out that decomposition-based EMO, more specifi-
cally MOEA/D, can solve multi-objective feature selection more efficiently
and effectively than Pareto dominance-based EMO. The strategy of de-
composing a multi-objective problem into many scalar sub-problems is
particularly suitable for multi-objective feature selection since it can be de-
composed along one of feature selection’s objectives which is the number
of features. Thus a highly discontinuous Pareto front in feature selection
becomes an advantage when MOEA/D is used to achieve feature selec-
tion. This decomposition strategy can be applied to other multi-objective
problems which have highly discontinuous Pareto front like feature selec-
tion.

The complicated relationship between objectives in feature selection
can also be handled using the proposed decomposition mechanism. Firstly,

184 CHAPTER 6. DECOMPOSITION-BASED MOFS

the fitness function of each sub-problem gives higher priority to the clas-
sification performance. Secondly, the dynamic mechanism can automati-
cally estimate in which regions the objectives are in conflict. Based on that,
more resources are allocated to conflicting regions to further improve the
quality of obtained feature subsets.

A limitation of this work is that the multiple reference point-based al-
gorithms spend computational time on repairing duplicated feature sub-
sets, which requires to re-estimate the repaired solutions. In the future,
we will investigate a more sophisticated evolutionary mechanism to avoid
producing duplicated solution leading to better efficiency. It also can be
seen that although the multiple reference point decomposition achieves
more diverse fronts than dominance-based algorithms such as SPEA2, some-
times solutions evolved by SPEA2 have a higher classification performance.
If more search pressure is putting on regions of those solutions, the Pareto
fronts of MOEA/D can be further improved. However, these regions de-
pend on datasets and it is not an easy task to identify them.

From Chapter 3 to Chapter 6, we have worked on improving the per-
formance of single-objective and multi-objective feature selection on both
evaluation and searching mechanisms, which are two main components
of feature selection. In the next chapter, we will work on using feature
selection to achieve transfer learning which is one of the challenging tasks
in machine learning, which is transfer learning.

Chapter 7

Feature Selection for Transfer
Learning

7.1 Introduction

Transfer learning is a challenging task in machine learning, which aims to
utilize acquired knowledge from a similar/related available labeled data
(source domain) to improve learning performance on the target data (tar-
get domain) [36]. If the source and target domains have the same feature
space, the transfer learning task can be further specified as domain adapta-
tion [36], which is the focus of this chapter.

There are many approaches to achieve domain adaptation (as discussed
in section 2.1.2 of Chapter 2); feature-based approaches are one of the most
popular approaches. Many recent feature-based domain adaptation meth-
ods [248, 249, 61, 193, 250] attempt to build a new common latent feature
space onto which both source and target data can be projected, and tra-
ditional machine learning can be used to train a classifier to classify the
projected target data. However, these methods usually have to assume
models to measure differences between data distributions in different do-
mains. Furthermore, the dimensionality of the latent feature space must be
pre-defined. Due to creating new high-level features for the latent feature

185

186 CHAPTER 7. FS FOR TRANSFER LEARNING

space, the meaning of the features and the interpretation of the data in the
projected space is reduced. Therefore, instead of building a new latent fea-
ture space with new high-level features, some other works [59, 60] select
a subset of the original features where the differences between source and
target data distributions are small. This has an advantage that it preserves
the meaning of the original features, instead of creating new features with
unknown meanings. Therefore, this chapter focuses on selecting original
features that are domain-invariant. This is known as feature selection for
domain adaptation.

Although it has been shown that selecting domain-invariant original
features across different domains has good results, domain-invariance is
not sufficient. It is also important that the selected features have high dis-
criminative ability (relevant features). This has not been paid enough at-
tention in existing feature selection-based domain adaptation approaches.
In addition, most existing feature-based domain adaptation approaches
make assumptions about marginal distributions (related to features) and/or
conditional distributions (related to the class label) to simplify their models
and make them easier to solve using numerical optimization techniques.
In this chapter, we propose a new fitness function, which guides PSO to
select a good domain-invariant feature subset with an expectation of re-
ducing differences in both marginal and conditional distributions while
maintaining good accuracies on the source and target domains. The fit-
ness function is designed with respect to the characteristics of the k-nearest
neighbor (KNN) classification algorithm in order to minimize the number
of model assumptions and lead to better accuracies on the target domain.

7.1.1 Chapter Goal

The overall goal of this chapter is to develop a new fitness function for PSO
to achieve feature selection for domain adaptation. The fitness function
aims to select domain-invariant features containing relevant information

7.2. PROPOSED ALGORITHM 187

about the class label, thereby resulting in high classification accuracies on
the target domain. The three main components in the fitness function aim
to reduce the classification error on the source domain, the difference of the
marginal distributions between the two domains, and the difference of the
conditional distributions between the two domains, respectively. Depend-
ing on whether there are labeled instances available in the target domain,
the fitness function can be flexibly changed from a semi-supervised to an
unsupervised form. The proposed fitness function is examined on three
real-world benchmark problems and compared with four state-of-the-art
traditional domain adaptation algorithms. Specifically, we will investi-
gate:

• whether the proposed fitness function can assist PSO to select a good
subset of features, which can achieve better performance than using
all features on the target domain,

• whether the proposed PSO-based algorithm with the new fitness
function can evolve common feature spaces, which achieve higher
classification accuracy than the four traditional feature-based domain
adaptation approaches, and

• whether the semi-supervised form can use class information on the
target domain to outperform the unsupervised form.

7.2 Proposed Algorithm

In this section, the proposed PSO-based feature selection approach for
domain adaptation is described. The main contribution is a new fitness
function which allows the PSO-based feature selection algorithm to work
in both cases: the class label information on the target domain is avail-
able, i.e. semi-supervised, or not available, i.e. unsupervised. To be con-
venient, the source dataset is named Src, the target un-labeled and la-
beled datasets are called TarU and TarL, respectively. Figure 7.1 gives

188 CHAPTER 7. FS FOR TRANSFER LEARNING
Transfer	Learning

Source
(features,	label)

TargetL
(features,	label)

TargetU
(features)

Transfer	Learning	Approach
(PSO/TCA/MIDA) A	classifier	to	classify

TargetU instances	
TargetU

(features,	label)

Testing	Accuracy

Testing	process

• Traditional	machine	learning:	cannot	use	either feature	values	or	labels	of	TargetU during	training	process

• Transfer	learning:	can	use	feature	values	but	not	labels	of	TargetU during	training	process
11

Training	process

Figure 7.1: An overall view of transfer learning.

an overall view of this work. As can be seen from the figure, a transfer
learning approach can take all the source instances (features, label), all
the available labeled-target instances (features, label), and feature values
from unlabeled-target instances to build a classifier that can classify the
unlabeled-target instances. This is very different from traditional machine
learning which is not allowed to use the feature values from the unlabeled-
target instances.

7.2.1 New Fitness Function

In feature selection for domain adaptation, in order to achieve high classi-
fication performance on the target domain, the selected features must sat-
isfy the following requirements: 1) having a good discriminative ability on
both domains, 2) minimizing the difference between conditional distribu-
tions, and 3) minimizing the difference between marginal distributions on
source and target domains. Therefore, the fitness function has three com-
ponents corresponding to the three above conditions, which can be seen
in Eq. (7.1).

Fitness = sw × srcErr + tw × tarErr + stw × diffST (7.1)

where srcErr and tarErr are classification errors on the source and target
data, which ensure the selected features to have a good discriminability

7.2. PROPOSED ALGORITHM 189

on both domains (requirement 1). Furthermore, tarErr is obtained based
on a classifier trained by the source data. Therefore, minimizing tarErr

leads to a smaller difference between conditional distributions on the two
domains (requirement 2). The last condition is achieved through diffST ,
which measures how different the two marginal distributions are (require-
ment 3). The three terms will be explained in more details in the following
sections. sw, tw, and stw are used to control the contributions of these three
components and they sum up to 1, i.e. sw + tw + stw=1. The weight val-
ues can show the relationship between source and target domains, which
will be illustrated in the parameter setting section. The three terms scrErr,
tarErr, and diffST are discussed in the following subsections.

7.2.2 Discriminability on the Source Domain: srcErr

In Eq. (7.1), srcErr is to ensure that the selected features have a high dis-
criminative ability in the source domain. srcErr is measured by the clas-
sification error rate. Many feature-based domain adaptation algorithms
aim to minimize the differences between source and target domains while
ignoring this important property in the source domain. The features ob-
tained from these algorithms might not be useful if they cannot preserve
the discriminative ability on the source domain and thereby on the target
domain, since the two domains become more similar under the selected
features.

In order to ensure that srcErr is not biased, srcErr is calculated by
applying 3-fold cross-validation on the source dataset. Particularly, each
fold plays the role of a test set one time while the other two folds are com-
bined to form a training set. Eq. (7.2) shows how classification error rate
is obtained on each fold.

ErrorRate =
FP + FN

TP + TN + FP + FN
(7.2)

where TP, TN, FP and FN stand for true positive, true negative, false
positive and false negative, respectively. The average value of three error

190 CHAPTER 7. FS FOR TRANSFER LEARNING

rates on the three folds is assigned to srcErr.

7.2.3 Discriminability on The Target Domain: tarErr

In order to achieve a good discriminability on the target domain, we have
to consider two possible situations: there are only a small number of la-
beled instances or there is no labeled instance, which form semi-supervised
or unsupervised learning tasks, respectively.

Semi-supervised learning

If there are a small set of labeled instances available in the target domain,
called TarL, tarErr can be calculated as the classification error rate on
TarL with Src being used as the training set. The reason is that if tarErr
is low, the two sets TarL and Src are likely to have similar conditional
distributions. Since TarL and TarU contain labeled and unlabeled in-
stances drawn from the target domain, they should have the same con-
ditional distribution. Therefore, minimizing tarErr leads to reducing the
distribution’s difference between Src and TarU as well. The tarErr in the
semi-supervised learning is named tarErrl.

Unsupervised Learning

In this case, we do not have labeled instances on the target domain, so
the question is how to measure the discriminability without using labels.
Based on the idea that the two closest instances usually belong to the same
class, we can estimate the classification error on the target domain by us-
ing labeled source domain instances, given a set of selected features. In
particular, suppose that xt1 and xt2 are two closest unlabeled instances on
the target domain (TarU), they are very likely to have the same class la-
bel. Since the class labels of xt1 and xt2 are not available, we can estimate
their class labels based on their two closest instances from the source do-
main, xs1 and xs2 . If xs1 and xs2 are in the same class, xt1 and xt2 are also in

7.2. PROPOSED ALGORITHM 191

Algorithm 4 : Calculate tarErru
1: correct =0
2: for each instance xti in TarU do
3: find its closest instance in the source domain, xsi
4: find its closest instance in the target domain, xtj
5: find the closest instance of xtj in the source domain, xsj
6: if xsi and xsj are in the same class then
7: correct = correct +1
8: end if
9: end for

10: tarErru = 1 - correct
|TarU |

the same class, which means the selected features are good for grouping
similar instances into the same class. Otherwise, xt1 and xt2 are in dif-
ferent classes indicating the poor discriminability of the selected features.
The tarErr in the unsupervised learning, called tarErru, is the division
between the number of closest target instances being estimated in differ-
ent classes and the total number of instances in TarU . Note that since the
number of closest instance pairs equal to the number of instances in TarU ,
tarErru is in the range [0, 1]. Details on calculating tarErru are shown in
Algorithm 4.

On both semi-supervised and unsupervised learning cases, the target
of tarErr is to ensure that if the selected features have a good discrim-
inative ability on the source domain, they should also have a high dis-
criminability on the target domain. Conceptually, this is similar to the
idea of making conditional distributions similar across domains in existing
feature-based domain adaptation approaches. However, the use of tarErr
does not require any model assumption about the conditional distribution
and it works closely with the KNN classification algorithm, which is ex-
pected to result in a high classification performance.

192 CHAPTER 7. FS FOR TRANSFER LEARNING

7.2.4 Difference Between Marginal Distributions: diffST

The last term, diffST , in Eq. (7.1) aims to minimize the difference between
the marginal distributions. Maximum Mean Discrepancy (MMD) [192] is
used to measure the difference between the two marginal distributions,
as shown in Eq. (7.3). This metric is widely used in many feature-based
approaches.

D(Src, TarU) =

∥∥∥∥∥∥ 1

|Src|

|Src|∑
i=1

φ(Srci)−
1

|TarU |

|TarU |∑
i=1

φ(TarUi)

∥∥∥∥∥∥
H

(7.3)

where φ(x) : X → H , H is a universal reproducing kernel Hilbert space.
|Src| and |TarU | are the number of instances on the source domain and the
number of unlabeled instances on the target domain, respectively. Note
that in both semi-supervised and unsupervised learning, TarU is always
used in the Eq. (7.3) since the final task is to well classify instances from
TarU . Using the kernel trick, i.e. k(zi, z

T
j) = φ(zi)φ(zTj), where k is a posi-

tive definite kernel [61], Eq. (7.3) can be rewritten as:

D(Src, TarU) =
(1

|Src|2

|Src|∑
i=1

|Src|∑
j=1

k(Srci, Srcj)

+
1

|TarU |2

|TarU |∑
i=1

|TarU |∑
j=1

k(TarUi, TarUj)

− 2

|Src||TarU |

|Src|∑
i=1

|TarU |∑
j=1

k(Srci, TarUj)
)1/2

(7.4)

According to [251], Gaussian Radial Basis Function [RBF, k(x, y) =

exp(||x − y||2/2σ2)] is able to detect more types of dependence than lin-
ear or polynomial kernels, where σ is the kernel width. Thus RBF is used
in this chapter, and its kernel width (σ) is automatically selected for each
case based on the “median trick” [252].

7.3. EXPERIMENT DESIGN 193

7.2.5 Overall Algorithm

In this chapter, the sticky binary PSO proposed in Chapter 4 is used as a
searching mechanism to generate candidate feature subsets. Each entry in
a particle’s position corresponds to one original feature. The entry’s value
indicates whether the corresponding feature is selected or not. Particu-
larly, the value of 1 means that the feature is selected; while the value of
0 means that the feature is discarded. This chapter is the first attempt to
perform feature selection for domain adaptation using PSO to automati-
cally choose a number of features while considering feature interactions
and discriminability on both domains.

The overall structure of the proposed system is shown in Fig. 7.2. The
main contribution of this chapter is the PSO-based feature selection algo-
rithm, which is marked in blue. In general, source (Src), unlabeled target
(TarU) and possibly labeled target (TarL) data are used to evaluate parti-
cles using the proposed fitness function, Eq. (7.1). Based on the final fea-
ture subset selected by PSO, both Src and TarU are projected on the com-
mon feature space to form two new data, Src′ and TarU ′, which should
share the same data distributions. The KNN classification algorithm (k=1)
uses Src′ as the training set to classify instances in TarU’ to obtain the clas-
sification performance on the target domain. Depends on whether TarL
is available in the target domain, either tarErrl or tarErru is used in Eq.
(7.1).

We name the two PSO-based algorithms using tarErrl and tarErru as
SemPSO and UnPSO, respectively.

7.3 Experiment Design

The proposed two algorithms are compared with using all features, two
well-known unsupervised traditional feature-based domain adaptation al-
gorithms, Transfer Component Analysis (TCA) [61], Maximum Indepen-

194 CHAPTER 7. FS FOR TRANSFER LEARNING

Figure 7.2: PSO-based Feature Selection for Domain Adaptation

dence Domain Adaptation (MIDA) [62], and their extended semi-supervised
algorithms, STCA [61], SMIDA [62]. The overall systems of the four bench-
mark traditional algorithms are similar to the one shown in Fig. 7.2, except
for the step of building the common feature space.

7.3.1 Benchmark Datasets

All the algorithms are examined on three well-known real-world prob-
lems, Gas Sensor [79], Handwritten Digits [60] and Object Recognition
[253, 248], which are shown in Table 7.1, where #C and #F represent the
number of classes and features. Each problem contains many cases, which
have the same number of classes and features, but might have different
numbers of instances in the source (Src) and target domains (TarU, TarL).

The gas sensor array drift datasets are collected by Vergara et al. [79]
using 16 gas sensors over 36 months. The task is to classify instances
into six different kinds of gas. The whole datasets are divided into 10
batches according to the acquisition time. The 1st batch is used as the
source dataset and each batch from the 2nd to the 10th ones are used as the
target dataset, which forms 9 domain adaptation cases.

USPS and MNIST [60] are two handwritten digit datasets, which share
10 classes of digits. The USPS dataset is collected by scanning envelops
from US Postal Service while MNIST is taken from mixed American Cen-
sus Bureau employees and American high school students, so they have

7.3. EXPERIMENT DESIGN 195

Table 7.1: Domain adaptation problems.

Problem Cases #C #F |Src| |TarU| |TarL|

Gas Sensor

1-2 6 129 178 746 498
1-3 6 129 178 951 635
1-4 6 129 178 97 64
1-5 6 129 178 118 79
1-6 6 129 178 1380 920
1-7 6 129 178 2168 1445
1-8 6 129 178 176 118
1-9 6 129 178 282 188

1-10 6 129 178 2160 1440

Handwritten MNIST-USPS 10 257 800 1080 720
Digits USPS-MNIST 10 257 720 1200 800

A-C 10 801 384 674 449
A-D 10 801 384 94 63
A-W 10 801 384 177 118
C-A 10 801 449 574 384
C-D 10 801 449 94 63

Object C-W 10 801 449 177 118
Recognition D-A 10 801 63 574 384

D-C 10 801 63 674 449
D-W 10 801 63 177 118
W-A 10 801 118 574 384
W-C 10 801 118 674 449
W-D 10 801 118 94 63

very different distributions. In this problem, there are two domain adap-
tation cases, in which either MNIST or USPS is the source dataset and the
other one is the target dataset.

The last problem is to recognize 10 objects from four different image
sources including Caltech-256 (C) [253], Amazon (A), Webcam (W) and
DSLR (D) [248]. To form a domain adaptation case in this problem, we
select one image source as the source domain and another image source as
the target domain. Therefore, there are 12 cases for the object recognition
problem.

In general, there are 23 domain adaptation cases, which have different
numbers of classes, features or different numbers of instances in the source
and target domains.

196 CHAPTER 7. FS FOR TRANSFER LEARNING

7.3.2 Parameter Settings

Parameters of the four traditional algorithms (TCA, STCA, MIDA, and
SMIDA), including their kernel and kernel widths, are tuned for the best
accuracy using a heuristic search [62] on each case. The parameters of
SBPSO are set according to Chapter 4. Each PSO-based algorithm is run
30 independent times on each case.

To tune the three weights in Eq. (7.1), three cases with the lowest
classification accuracy from each problem are selected as representatives,
which are “1-8”, “USPS-MNIST”, and “C-W”. Different values of the three
weights are examined by running SemPSO one time on each selected case.
The evolved feature subsets are used to obtain two projected datasets of
Src and TarL, called Src′ and TarL′. The best setting for each problem is
selected according to the best and the average classification accuracy on
TarL′. Particularly, on Gas Sensor, sw, tw, and stw are set to 0.1, 0.9 and
0.0, respectively. On Handwritten Digits and Object Recognition, the three
values are (0.1, 0.7, 0.2) and (0.0, 0.1, 0.9), correspondingly. Based on the
parameters, it can be seen that different problems have different relation-
ships between source and target domains. For example, on Gas Sensor, tw
is large which means that the main difference between the two domains
is the conditional distribution. Thus tuning the weights may reveal the
relationship between domains, which cannot be easily achieved by most
traditional approaches. The setting of UnPSO mainly follows SemPSO,
except for Object Recognition, where sw is set to 0. Since TarL is not avail-
able in UnPSO, srcErr seems to be more reliable than tarErr, so sw is set
to 0.1 instead of 0.0.

7.4 Results and Discussions

The results on all algorithms are shown in Table 7.2. In the table, #F and
Acc represent for the number of selected features and the average classifi-

7.4. RESULTS AND DISCUSSIONS 197

cation performance. The numbers of features selected by PSO-approaches
are used as the pre-defined number of features for four traditional meth-
ods to ensure a relatively fair comparison. In the table, the best accuracies
are marked in bold while the second best ones are underlined. A signifi-
cance Wilcoxon test with significance level set to 0.05 is used to compare
semi-supervised, unsupervised approaches to examine the effect of the
proposed fitness function in both learning cases. Particularly, SemPSO is
compared with Full/STCA/SMIDA in Table 7.3(a). Table 7.3(b) shows the
comparisons between UnPSO and Full/TCA/MIDA. In each table cell, the
three numbers sequentially represent the number of cases that the PSO-
based approaches are significantly better, similar or worse than the other
benchmark algorithms.

7.4.1 SemPSO/UnPSO vs Using All Features

As can be seen from Table 7.2, in all cases, SemPSO achieves significantly
better performance than using all features. For example on Gas Sensor,
SemPSO usually improves 20% over the original feature set, especially
on the 1-8 case, the accuracy of SemPSO is almost three times better. In
the 1-6 case, the accuracy of using all features are already quite high,
which means that the two domains are very similar and most features are
domain-invariant. However, SemPSO still manages to improve the accu-
racy by 5%. The possible reason is the classification accuracies in Eq. (7.1)
assist PSO to remove irrelevant or redundant features from both domains.

Similar to SemPSO, UnPSO also achieves good performance despite
lacking information about the class label in the target domain. Table 7.3(b)
shows that UnPSO is worse than the original feature sets on only two cases
while being significantly better on 17 out of the 23 cases. Although on 1-10
and D-A, UnPSO’s accuracies are at most 0.9% less than using all features,
it only selects less than half number of the features. On the other hand,
the largest improvement by UnPSO is on W-C, where UnPSO evolves a

198 CHAPTER 7. FS FOR TRANSFER LEARNING

Table 7.2: Overall results on 23 domain adaptation cases.

Cases
Full Unsupervised Semi-supervised

#F Acc
TCA MIDA UnPSO STCA SMIDA SemPSO
Acc Acc #F Acc Acc Acc #F Acc

1-2 128 69.57 63.40 61.80 58.63 76.71 72.39 68.50 49.33 90.90
1-3 128 70.24 60.04 63.41 57.00 72.66 72.24 63.83 44.30 94.58
1-4 128 61.86 52.58 56.70 62.40 61.55 68.04 58.76 55.23 81.34
1-5 128 70.34 49.15 75.42 53.70 71.89 66.95 75.42 56.73 76.44
1-6 128 89.64 79.06 80.14 59.00 89.56 84.35 80.58 52.47 94.53
1-7 128 53.60 57.84 56.83 55.20 58.09 63.65 55.81 45.73 71.54
1-8 128 26.70 12.50 29.55 60.33 32.41 9.09 13.64 41.27 79.47
1-9 128 46.45 21.28 18.44 57.93 53.01 29.79 71.63 47.67 67.86
1-10 128 49.12 49.54 47.31 58.83 48.19 57.73 45.28 36.77 68.35

MNIST-USPS 256 59.63 35.65 34.91 113.33 65.90 55.65 35.93 104.23 72.54
USPS-MNIST 256 23.83 20.83 21.17 74.13 49.82 10.67 19.92 97.33 56.14

A-C 800 22.55 27.89 28.19 414.83 27.24 19.44 31.45 410.20 30.53
A-D 800 18.09 22.34 23.40 409.17 26.74 17.02 26.60 392.30 29.61
A-W 800 22.03 26.55 27.12 412.90 28.31 20.90 32.20 401.73 35.37
C-A 800 24.39 30.84 30.49 396.23 28.82 24.56 15.33 394.03 33.05
C-D 800 22.34 6.38 26.60 390.47 25.53 23.40 25.53 383.30 26.06
C-W 800 16.95 20.90 20.34 396.03 25.12 20.34 23.73 389.03 28.44
D-A 800 22.65 17.94 17.42 397.63 22.10 11.50 23.34 394.00 31.40
D-C 800 23.74 24.78 23.44 379.83 22.38 12.76 26.26 393.80 29.06
D-W 800 41.24 10.17 18.08 396.10 47.18 42.94 18.08 405.07 51.94
W-A 800 21.95 9.58 24.91 403.67 21.62 10.63 24.22 401.43 30.21
W-D 800 44.68 13.83 14.89 407.57 52.27 7.45 18.09 403.17 50.32
W-C 800 8.00 14.24 14.09 412.17 21.39 14.39 10.83 391.27 27.72

Table 7.3: SemPSO or UnPSO being better/similar/worse using
significance tests.

Full STCA SMIDA

23/0/0 23/0/0 20/1/2

(a) SemPSO vs
semi-supervised methods

Full TCA MIDA

17/4/2 18/1/4 17/2/4

(b) UnPSO vs
unsupervised methods

7.4. RESULTS AND DISCUSSIONS 199

set of features which are almost three times more accurate than using all
features.

The experimental results show that PSO guided by the proposed fit-
ness function can automatically reduce half of the numbers of features and
achieve better classification performance than using all features. The fit-
ness function not only selects domain-invariant features but also extracts
relevant ones to improve the classification accuracy.

7.4.2 SemPSO vs STCA/SMIDA

As can be seen in Table 7.3(a), SemPSO well utilizes the class label in-
formation on the target domain to significantly improve the classifica-
tion performance. In all cases, SemPSO significantly outperforms STCA.
In comparison with SMIDA, SemPSO is significantly better on 20 out of
the 23 cases. On the 1-6 case, where the two domains are very similar,
both STCA and SMIDA build new latent feature spaces, which perform
worse than the original features. In this case, the important information
of original features is discarded by the two traditional methods. On the
other hand, SemPSO aims to select relevant original features on both do-
mains, so it can improve the performance over using all features. The
two traditional methods aim to maximize the dependence between the
features and labels on the target domain. However, the dependency is
implicitly optimized through the Hilbert-Schmidt Independence Criterion
(HSIC) [254]. Meanwhile, in the proposed fitness function, the classifica-
tion performance explicitly presents the dependence between the features
and class labels, which leads to higher accuracies of the target model. In
comparison with UnPSO, except for W-D, SemPSO achieves better classi-
fication performance on all other cases. The results show that the actual
classification error on TarL works better than estimating the classification
error on TarU.

200 CHAPTER 7. FS FOR TRANSFER LEARNING

7.4.3 UnPSO vs TCA/MIDA

The significance test results between UnPSO and TCA/MIDA are shown
in Table 7.3(b). As can be seen from the table, UnPSO is similar to the
two traditional algorithms only on at most two cases while being signif-
icantly better on at least 17 cases. On the Gas Sensor problem, UnPSO
usually achieves 10% accuracy better than at least one of the two tradi-
tional methods. Especially on the difficult case 1-9, UnPSO is at least three
times more accurate than TCA and MIDA. UnPSO also outperforms the
two traditional methods on the two handwritten digital cases. Only on
the 12 object recognition cases, TCA and MIDA can achieve comparable
performance in comparison with UnPSO. UnPSO is similar or better than
the other two methods on only nine out of the 12 cases. The possible rea-
son is the estimation process of tarErru mainly bases on Euclidean dis-
tances, which may not work well on such high-dimensional datasets (800
features).

7.4.4 Overall Comparisons

As can be seen in Table 7.2, in general, SemPSO achieves the best clas-
sification accuracy on 19 out of the 23 cases while being ranked as the
second-best algorithm on the other four cases. UnPSO evolves the best
common feature set on one case and acquires the second best accuracy on
nine cases. The achievement of UnPSO is much better than the best tra-
ditional algorithm, SMIDA, which obtains the best or second best perfor-
mance on six cases. Note that in the overall comparisons, UnPSO is also
compared with semi-supervised algorithms like SMIDA, which assume
some instances are labeled in the target domain. Therefore, the outper-
formance of UnPSO to other semi-supervised traditional algorithms sug-
gests that the estimation of target classification error based on the source
domain can improve the discriminative ability on the target domain and
reduce the differences between their conditional distributions, which are

7.5. CHAPTER SUMMARY 201

assumed to be the same in the four traditional approaches. The classi-
fication error rate on the source domain also plays an important role in
the fitness function. Normally, traditional feature-based adaptation ap-
proaches focus only on producing domain-invariant features, while the
source classification performance ensures that the selected features have
high discriminative abilities on both domains when they become similar.

7.5 Chapter Summary

In this chapter, a novel fitness function is developed to assist PSO to au-
tomatically select a subset of original features, which can improve classifi-
cation performance in domain adaptation problems. The proposed fitness
function aims to select relevant and domain-invariant features across dif-
ferent domains. The fitness function can flexibly adapt with unsupervised
or semi-supervised domain adaptation, depends on the availability of la-
bels on the target domain. Based on that, two PSO-based feature selection
algorithms for domain adaptation are proposed and examined on three
well-known real-world problems containing 23 domain adaptation cases,
in total. The proposed PSO-based algorithms, called UnPSO and SemPSO,
are compared with using all features and four traditional feature-based
domain adaptation algorithms, TCA, STCA, MIDA, and SMIDA. The ex-
perimental results show that both UnPSO and SemPSO outperform us-
ing all features and the other algorithms on almost all datasets. Although
UnPSO does not use any labeled instances in the target domain, it still
outperforms semi-supervised benchmark algorithms, such as STCA and
SMIDA, on many domain adaptation cases.

The contribution of this chapter is to design a new fitness function for
PSO to achieve domain adaptation by feature selection. This is the first
work applying an EC algorithm, more specifically PSO, to achieve feature-
based domain adaptation. In the proposed fitness function, the classifi-
cation performance is used to explicitly consider discriminating abilities

202 CHAPTER 7. FS FOR TRANSFER LEARNING

on both domains, feature interactions and minimize model assumptions
about differences between source and target domains. By doing that, PSO
can select better feature subsets than relying on model assumptions which
may ignore the feature interactions. Furthermore, the proposed fitness
function can flexibly adapt to the availability of labeled instances in the
target domain, which is usually more difficult to achieve by the traditional
feature-based domain adaptation.

In the future, we will further investigate their potential to achieve even
better performance. For example, the difference between two marginal
distributions is calculated based on the MMD model, which may not per-
form well on the high-dimensional dataset. We will work on estimating
the difference without any model assumption. The three weights in the
fitness function can be adaptively changed, by analyzing the relationships
between source and target domains. In addition, in case of unsupervised
learning, distance-based measures are used to estimate class labels for un-
labeled instances. It is known that distance-based measures may not scale
well with respect to the number of features, so new measures need to be
investigated.

Chapter 8

Conclusions

This thesis has focused on developing EC-based feature selection methods
in classification. The overall goal was to investigate and improve the ca-
pability of EC for feature selection to reduce the number of features while
maintaining or even improving the classification performance compared
with using all the original features. To achieve the above goal, a num-
ber of EC-based feature selection approaches have been proposed to au-
tomatically select small feature subsets with similar or better classification
performances than using all features. The proposed methods focus on dif-
ferent aspects of feature selection such as the number of objectives (single-
objective/multi-objective), the fitness function (filter/wrapper), and the
searching mechanism. Experiments have been conducted to examine and
compare the proposed methods with existing methods on a range of real-
world datasets of varying difficulty. The results show that the proposed
algorithms can enhance the capability of EC-based feature selection to ef-
fectively select small subsets of informative features for classification.

The remainder of this chapter presents conclusions for each individual
objective of this thesis, summarizes the main findings from each chapter,
and then suggests several potential research directions for future work.

203

204 CHAPTER 8. CONCLUSIONS

8.1 Achieved Objectives and Main Conclusions

This thesis has demonstrated that EC, more specifically PSO and MOEA/D,
can effectively and efficiently address feature selection in single and multi-
objective ways, respectively. The EC-based feature selection approach can
also be applied to achieve transfer learning, one of the most challenging
tasks in machine learning.

In this section, each of the five achieved objectives is summarized, fol-
lowed by the main conclusions drawn from each objective.

8.1.1 PSO and Mutual Information Estimation for Feature

Selection

This first objective was to design a new fitness function in PSO for sin-
gle objective filter-based feature selection (Chapter 3). In the new fitness
function, mutual information is used to measure the relevance and redun-
dancy of a candidate feature subset, and is calculated using an estimation
method to avoid limitations of the traditional counting approach. Exper-
imental results show that the new fitness function can assist PSO to re-
duce the number of features while achieving comparative classification
performance in comparison with using all features. More importantly, the
estimation approach results in better feature subsets than the traditional
counting approach on both continuous and discrete datasets. This ap-
proach is the first PSO and mutual information estimation-based feature
selection approach.

Feature interactions

Mutual information is a good measure to detect interactions between fea-
tures. This thesis demonstrates that the estimation approach can calculate
the mutual information for detecting feature interactions better than the
counting approach. Given a set of features, both approaches try to build

8.1. ACHIEVED OBJECTIVES AND MAIN CONCLUSIONS 205

probability distributions on the feature values by examining the instances.
However, the counting approach simply counts instances with each pos-
sible value of the features to derive probability distributions for the fea-
tures. For numeric features, this requires a large number of instances to
calculate mutual information accurately. On the other hand, the estima-
tion approach is based on distances between the feature values in the in-
stances to derive the probability distribution of the feature, which exploits
additional information about ordering in continuous and ordered discrete
datasets. Therefore, the estimation based feature selection algorithms can
detect redundant and irrelevant features which cannot be detected using
the counting approach.

In addition, the estimation approach can work directly on both contin-
uous and ordered discrete datasets. In contrast, on continuous datasets,
the counting approach requires a discretization process which loses impor-
tant information from the original data. A recommendation of this thesis is
to use the estimation approach on these kinds of datasets, where feasible.

Computational time

In terms of the computational cost, the estimation approach is more ex-
pensive than the counting approach. The main reason is that the counting
approach goes through all instances to count; so its complexity is O(N),
given N is the number of instances. The estimation approach has to calcu-
late between instances; in general its complexity is at least O(N2) with a
higher constant factor than the counting approach. Therefore, the estima-
tion approach may be infeasible on large datasets.

8.1.2 Sticky Binary PSO

This thesis introduces a novel binary PSO (BPSO) algorithm which can ef-
fectively address binary problems, such as feature selection (Chapter 4).
In the new BPSO algorithm, the velocity is redefined as the flipping prob-

206 CHAPTER 8. CONCLUSIONS

ability and the momentum is redefined as the tendency to stick with the
current position. The two newly defined concepts help to describe move-
ments of particles in binary search spaces more accurately. Based on that,
a dynamic mechanism is proposed to better balance exploration and ex-
ploitation during the evolutionary process of BPSO. Experiments on two
well-known binary problems (knapsack and feature selection) show that
the new BPSO algorithm evolves similar or better solutions than other
well-known binary EC algorithms on almost all datasets. In addition, the
new BPSO algorithm is more efficient than the other algorithms. The dy-
namic mechanism improves the performance of the new BPSO algorithm
since it helps to better control the trade-off between exploration and ex-
ploitation.

This thesis shows that in order to achieve good performances on bi-
nary search spaces, BPSO has to be designed to cope with characteristics
of these search spaces. In addition, given a limited computational resource
to solve a problem with a large and complex search space, the trade-off
between exploration and exploitation needs to be considered carefully to
acquire good solutions.

Movements of particles in binary search spaces

This thesis shows that the performance of BPSO can be significantly im-
proved if the movements of particles in a binary search space are described
more accurately. The main reason is that in a binary search space, parti-
cles move by flipping their position’s entries, which has no direction in
contrast to movements in a continuous search space. The limitations of
existing BPSO algorithms are a result of inappropriately applying the ve-
locity and momentum concepts from continuous PSO to BPSO. Therefore,
redefining velocity as a flipping probability and momentum as a stickiness
property is suitable for binary search spaces, which improves the perfor-
mance of BPSO.

8.1. ACHIEVED OBJECTIVES AND MAIN CONCLUSIONS 207

Exploration and exploitation in a large and complex search space

This thesis demonstrates that controlling the trade-off between exploration
and exploitation can significantly influence the performance of binary PSO
on binary problems, specifically feature selection.

The thesis confirms that it is better to focus more on exploration at the
beginning, and then gradually shift the focus to exploitation at the end,
which is generally accepted. The main reason is exploring more promising
regions first avoids local optima, then the exploitation can focus on the
promising regions. A common way is to do all exploration first, then all
exploitation. This thesis shows that this is not always the best way.

When the search space is large (due mainly to a large number of deci-
sion variables/features) and complex (due mainly to complex interactions
between features), it is better to take an alternating approach which alter-
nates between exploration and exploitation than the sequential approach,
performing all the exploration followed by all the exploitation. The ex-
ploration steps aim to discover promising regions in the search space; the
exploitation steps aim to find the best point within a promising region. In
the sequential approach, PSO may forget some discovered promising re-
gions which might contain an optimal solution. The alternating approach
can partially avoid that by exploiting discovered promising regions as
they are found. Furthermore, even if PSO does not lose any promising
regions, in the exploitation step, PSO usually splits its computational re-
sources evenly on different promising regions. In the sequential approach,
the exploration may result in a large number of promising regions, so there
will be only a little computational resource allocated to each region. This
may lead to these regions not being well exploited, which does not re-
sult in good solutions. The alternating approach exploits the promising
regions as they are found, so for each iteration, the number of promising
regions exploited by the alternating approach is usually smaller than that
of the sequential approach. Therefore, the alternating approach puts more
computational resources in each region, which might result in better solu-

208 CHAPTER 8. CONCLUSIONS

tions. Most importantly, the exploitation process usually results in better
quality solutions than the exploration process. Therefore, interleaving of
exploration and exploitation usually leads to better solutions during the
evolutionary process, which is more likely to result in better final solu-
tions than the sequential approach, given the same computational cost.

By combining a mechanism to alternate between exploration and ex-
ploitation with a dynamic mechanism to increase the amount of exploita-
tion towards the end, the proposed BPSO algorithm can evolve signifi-
cantly better feature subsets, especially on datasets with large numbers of
features.

8.1.3 Surrogate Models for Wrapper-based Feature Selec-

tion

This thesis presented a surrogate model in PSO for single objective wrapper-
based feature selection (Chapter 5). The main goal was to reduce the com-
putational cost of wrapper-based feature selection approaches while main-
taining or even improving the classification performance. In the surrogate
model, a surrogate training set is built by selecting a small number of in-
formative instances from the original training set. The surrogate training
assists PSO to efficiently locate promising regions in the search space, then
the located regions are further explored using the original training set. A
local search was also proposed to improve the quality of current gbest,
based on the surrogate training set and information obtained from gbest

in previous iterations. Furthermore, a dynamic surrogate model was pro-
posed to automatically select a suitable surrogate training set during the
PSO evolutionary process. The experimental results show that the new
surrogate models help PSO to select smaller subsets of features with sim-
ilar or better classification accuracies than using the original training set.
More importantly, using the surrogate training set can significantly reduce
the computational cost of PSO-based wrapper-based feature selection al-

8.1. ACHIEVED OBJECTIVES AND MAIN CONCLUSIONS 209

gorithms.

Surrogate training set

This thesis demonstrates that using the surrogate training set can partially
avoid overfitting and reduce the number of selected features. However,
it is important to select informative instances and remove noisy instances
from the original training set to form the surrogate training set. The main
purpose is to maintain important information which is the class bound-
aries in this case. Removing noisy instances helps the search to select im-
portant features and avoid features which capture characteristics of noisy
instances. It is also important to select enough instances to avoid underfit-
ting. Furthermore, the consistency between the surrogate training set and
the original training set has to be maintained during the evolutionary pro-
cess in order to make the surrogate fitness landscape similar to the original
fitness landscape. This ensures that the promising regions obtained using
the surrogate fitness function are worth exploring using the original fit-
ness function.

Local search in a surrogate model

Although a surrogate model using a surrogate training set can signifi-
cantly reduce the computational cost, it is still an approximation approach
and its performance is usually similar to the original model (without us-
ing the surrogate model). It was found that a local search based on the
surrogate training set can improve the performance of using the surro-
gate model without increasing the computational cost too much. The local
search improves the quality of current gbest using features selected by gbest
in previous iterations. In PSO, gbest captures essential historical informa-
tion about the evolutionary search, but the local search approach shows
that there is an advantage in keeping more historical information about
the evolutionary search, because this additional historical information can

210 CHAPTER 8. CONCLUSIONS

improve the performance of PSO for feature selection.

8.1.4 Multi-objective Wrapper-based Feature Selection

This thesis presents a multi-objective wrapper-based feature selection ap-
proach using MOEA/D (Chapter 6). The new approach decomposes multi-
objective feature selection into several single-objective sub-problems by
using a set of multiple reference points instead of a set of weight vectors
as in standard MOEA/D. Each reference point corresponds to a number of
features and the task of the corresponding sub-problem is to find the best
feature subset containing at most the number of features. The reference
points can be allocated statically with fixed locations or dynamically with
their locations being updated during the evolutionary process. The dy-
namic allocation aims to deal with the partial conflict between the two ob-
jectives of feature selection. Experimental results show that both versions
of the new algorithm can evolve more diverse Pareto fronts than three
well-known Pareto dominance-based algorithms and standard MOEA/D.
The dynamic allocation successfully detects conflicting regions, which re-
sults in more diverse Pareto fronts with better classification performance
than the static allocation.

Highly discontinuous Pareto fronts

This thesis shows how to use a new decomposition in order to apply
MOEA/D to a problem with a highly discontinuous Pareto front. Han-
dling Pareto fronts with complex shapes is a challenging task for standard
MOEA/D since its performance heavily depends on its set of weight vec-
tors which in turn depends on the shape of the Pareto front. The decompo-
sition based on multiple reference points allocated on the feature ratio (i.e.
number of selected features over the total number of features) axis makes
MOEA/D able to cope with the discontinuity of Pareto fronts in multi-
objective feature selection. This decomposition is expected to be effective

8.1. ACHIEVED OBJECTIVES AND MAIN CONCLUSIONS 211

in solving other multi-objective problems which have highly discontinu-
ous Pareto fronts like feature selection.

Unequally important objectives

This thesis demonstrates that MOEA/D is a good choice for feature selec-
tion. Although Pareto dominance-based EMO algorithms can cope with
highly discontinuous Pareto front, they usually assume that the two ob-
jectives have the same importance. In feature selection, the classification
performance usually has a higher priority than the number of features.
Since each sub-problem in MOEA/D is usually a single objective prob-
lem, this characteristic can be embedded in the fitness function for each
sub-problem. The same would be true for any other multi-objective where
the objectives do not have equal importance.

Objectives that only partially conflict

Multi-objective approaches usually assume that the objectives are in con-
flict. In multi-objective feature selection, the two objectives are not al-
ways in conflict. The regions where the objectives are not conflicting have
only one best solution, but the conflicting regions may have multiple non-
dominated solutions. Therefore the conflicting regions should be focused
on more than the non-conflicting regions. Chapter 6 presented the first
work using MOEA/D that identifies conflicting regions in feature selec-
tion. By allocating more reference points, it can allocate more computa-
tional resources to conflicting regions, which results in a diverse set of
non-dominated feature subsets with better classification performance.

8.1.5 Feature Selection for Transfer Learning

This thesis introduces a PSO-based feature selection algorithm for feature-
based transfer learning. The new PSO-based algorithm has a novel fitness

212 CHAPTER 8. CONCLUSIONS

function which explicitly uses the classification performance to reduce as-
sumptions required to model the differences between the source and tar-
get domains while still selecting relevant and domain-invariant features
across different domains. The new fitness function is effective whether or
not class labels are available in the target domain. The new algorithm can
successfully evolve small feature subsets which achieve better classifica-
tion performance on the target domain than using all features. Given the
same number of features, the new algorithm can evolve feature subsets
with lower classification error than four well-known feature-based trans-
fer learning algorithms.

This thesis demonstrates that PSO-based feature selection can be suc-
cessfully applied to achieve transfer learning, which has not been done
before. In feature-based transfer learning, the task is to select features
that are not only relevant but also domain-invariant, which minimize the
differences between data distributions (marginal and conditional distri-
butions) on different domains. Therefore, the fitness function for feature
selection-based transfer learning is more complex than the fitness function
for feature selection in classification. It is shown that instead of using any
model assumptions, classification accuracy can be used in the fitness func-
tion to simultaneously reduce the difference between conditional distri-
butions and maintain discriminating ability on target domains. The new
fitness function can take advantages of class labels in the target domain
but does not require them, which is an advantage over traditional feature-
based transfer learning.

8.2 Future Work

This section provides some possible directions for future work.

8.2. FUTURE WORK 213

8.2.1 Mutual Information Estimation-based Feature Selec-

tion

It has been shown that mutual information estimation works well on fea-
ture selection. However, its computational cost is high. One cause of the
high cost is a large number of instances. Therefore, one way to address
the problem would be to develop an instance selection algorithm for mu-
tual information estimation to reduce the number of instances. However,
removing too many instances may affect the performance of mutual infor-
mation estimation and therefore the ability to detect relevant and redun-
dant features. A second cause for the high cost is that it is time-consuming
to calculate pair-wise distances between instances and sort them. There-
fore, another way to address the problem would be to develop a new mu-
tual information estimator that is not based on distances. An additional
reason for this approach is that it is known that distance measures may
not work well on datasets with high dimensionality.

8.2.2 Combining Feature Construction and Feature Selec-

tion

Feature construction and feature selection are the two main approaches for
feature reduction. However, most existing feature reduction work focuses
on either feature selection or feature construction. Tran et al. [255] showed
that the combination of new high-level features and the original features
appearing in the high-level features achieves a better classification perfor-
mance than using only selected features or only constructed features. This
suggests that it is promising to do feature construction and feature selec-
tion together so that we can take the advantages of both methods. This
was partially done by Tran et al. [255] but only the constructed features
were evolved during the evolutionary process while the selected features
were chosen at the end, which meant that the interactions between con-
structed and selected features were ignored. It would be interesting to

214 CHAPTER 8. CONCLUSIONS

develop a new representation and updating mechanisms to combine fea-
ture construction and feature selection. We conducted some initial work
on this problem, which used a simple combination of vector-based feature
selection and tree-based feature construction within a single evolutionary
process (mixing GA-like operators and GP-like operators) [256]. Future
work could explore how to take into account interactions between the two
components.

8.2.3 MOEA/D for Feature Selection

This thesis proposed the first multi-objective wrapper-based feature se-
lection approach using MOEA/D. It has been shown that MOEA/D can
evolve a more diverse set of non-dominated feature subsets than Pareto
dominance-based algorithms. However, given the same number of fea-
tures, the Pareto dominance-based algorithms still achieve better classifi-
cation performance. In addition, the computational cost of the proposed
algorithm is still high due to the repairing process which requires addi-
tional evaluations. Therefore, future work could investigate more sophis-
ticated updating mechanisms which produce feasible feature subsets and
put more emphasis on improving the classification performance.

8.2.4 Feature-based Transfer Learning

This thesis proposed the first work applying PSO-based feature selection
to achieve transfer learning. However, this was a very initial work and
more works need to be done in future to investigate more deeply the abil-
ity of EC-based feature reduction to achieve transfer learning. One di-
rection would be to apply GP to build new latent feature spaces between
different domains. This could be further extended by building a new fea-
ture space containing a subset of the original features and new high-level
features.

Bibliography

[1] R. Bellman, Dynamic programming. Courier Corporation, 2013.

[2] E. Keogh and A. Mueen, Curse of Dimensionality, pp. 314–315.
Boston, MA: Springer US, 2017.

[3] H. Zhao, A. P. Sinha, and W. Ge, “Effects of feature construction
on classification performance: An empirical study in bank failure
prediction,” Expert Systems with Applications, vol. 36, no. 2, pp. 2633–
2644, 2009.

[4] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and
H. Liu, “Feature selection: A data perspective,” ACM Computing
Surveys (CSUR), vol. 50, no. 6, p. 94, 2017.

[5] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” The Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[6] A. A. Albrecht, “Stochastic local search for the feature set problem,
with applications to microarray data,” Applied Mathematics and Com-
putation, vol. 183, no. 2, pp. 1148–1164, 2006.

[7] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Ma-
chine Learning, pp. 760–766, Springer, 2011.

[8] K. Neshatian and M. Zhang, “Dimensionality reduction in face de-
tection: A genetic programming approach,” in International Confer-

215

216 BIBLIOGRAPHY

ence on Image and Vision Computing New Zealand, pp. 391–396, IEEE,
2009.

[9] H. Yuan, S.-S. Tseng, W. Gangshan, and Z. Fuyan, “A two-phase fea-
ture selection method using both filter and wrapper,” in IEEE Inter-
national Conference on Systems, Man, and Cybernetics, vol. 2, pp. 132–
136, 1999.

[10] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolu-
tionary computation approaches to feature selection,” IEEE Transac-
tions on Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016.

[11] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learn-
ing,” in Proceedings of the 24th International Conference on Machine
learning, pp. 193–200, ACM, 2007.

[12] J. Jiang and C. Zhai, “Instance weighting for domain adaptation in
nlp,” in ACL, vol. 7, pp. 264–271, 2007.

[13] E. V. Bonilla, K. M. Chai, and C. Williams, “Multi-task gaussian pro-
cess prediction,” in Advances in Neural Information Processing Systems,
pp. 153–160, 2007.

[14] A. Schwaighofer, V. Tresp, and K. Yu, “Learning gaussian process
kernels via hierarchical bayes,” in Advances in Neural Information Pro-
cessing Systems, pp. 1209–1216, 2004.

[15] I.-H. Jhuo, D. Liu, D. Lee, S.-F. Chang, et al., “Robust visual do-
main adaptation with low-rank reconstruction,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2168–2175,
2012.

[16] M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann,
“Unsupervised domain adaptation by domain invariant projection,”

BIBLIOGRAPHY 217

in IEEE International Conference on Computer Vision (ICCV), pp. 769–
776, 2013.

[17] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsuper-
vised visual domain adaptation using subspace alignment,” in IEEE
International Conference on Computer Vision (ICCV), pp. 2960–2967,
2013.

[18] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons, 2012.

[19] J. Ahmad, F. Javed, and M. Hayat, “Intelligent computational model
for classification of sub-golgi protein using oversampling and fisher
feature selection methods,” Artificial intelligence in Medicine, vol. 78,
pp. 14–22, 2017.

[20] M. Dash, H. Liu, and H. Motoda, “Consistency based feature selec-
tion,” in Knowledge Discovery and Data Mining. Current Issues and New
Applications, pp. 98–109, Springer, 2000.

[21] M. A. Hall, “Correlation-based feature selection of discrete and nu-
meric class machine learning,” 2000.

[22] A. Senawi, H.-L. Wei, and S. A. Billings, “A new maximum
relevance-minimum multicollinearity (mrmmc) method for feature
selection and ranking,” Pattern Recognition, vol. 67, pp. 47–61, 2017.

[23] I. Kononenko, “On biases in estimating multi-valued attributes,” in
IJCAI, vol. 95, pp. 1034–1040, Citeseer, 1995.

[24] F. Li, D. Miao, and W. Pedrycz, “Granular multi-label feature se-
lection based on mutual information,” Pattern Recognition, vol. 67,
pp. 410–423, 2017.

218 BIBLIOGRAPHY

[25] W. Gao, L. Hu, and P. Zhang, “Class-specific mutual information
variation for feature selection,” Pattern Recognition, vol. 79, pp. 328–
339, 2018.

[26] C. Granger and J.-L. Lin, “Using the mutual information coefficient
to identify lags in nonlinear models,” Journal of time series analysis,
vol. 15, no. 4, pp. 371–384, 1994.

[27] G. A. Darbellay, “An estimator of the mutual information based on
a criterion for conditional independence,” Computational Statistics &
Data Analysis, vol. 32, no. 1, pp. 1–17, 1999.

[28] C. Freeman, D. Kulić, and O. Basir, “An evaluation of classifier-
specific filter measure performance for feature selection,” Pattern
Recognition, vol. 48, no. 5, pp. 1812–1826, 2015.

[29] J. Kennedy and R. C. Eberhart, “A discrete binary version of the par-
ticle swarm algorithm,” in IEEE International Conference on Systems,
Man, and Cybernetics, vol. 5, pp. 4104–4108 vol.5, 1997.

[30] J. Kennedy, R. Eberhart, et al., “Particle swarm optimization,” in Pro-
ceedings of IEEE International Conference on Neural Networks, vol. 4,
pp. 1942–1948, Perth, Australia, 1995.

[31] H. Li and Q. Zhang, “Multiobjective optimization problems with
complicated Pareto sets, MOEA/D and NSGA-II,” IEEE Transactions
on Evolutionary Computation, vol. 13, no. 2, pp. 284–302, 2009.

[32] M. Lichman, “UCI machine learning repository,” 2013.

[33] Y. Kodratoff, Introduction to machine learning. Morgan Kaufmann,
2014.

[34] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine learn-
ing: An Artificial Intelligence Approach. Springer Science & Business
Media, 2013.

BIBLIOGRAPHY 219

[35] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited„ 2016.

[36] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[37] N. M. Nasrabadi, “Pattern recognition and machine learning,” Jour-
nal of Electronic Imaging, vol. 16, no. 4, p. 049901, 2007.

[38] L. Olshen, C. J. Stone, et al., “Classification and regression trees,”
Wadsworth International Group, vol. 93, no. 99, p. 101, 1984.

[39] B. Zheng, S. W. Yoon, and S. S. Lam, “Breast cancer diagnosis based
on feature extraction using a hybrid of k-means and support vector
machine algorithms,” Expert Systems with Applications, vol. 41, no. 4,
pp. 1476–1482, 2014.

[40] J.-H. Kim, “Estimating classification error rate: Repeated cross-
validation, repeated hold-out and bootstrap,” Computational Statis-
tics & Data Analysis, vol. 53, no. 11, pp. 3735–3745, 2009.

[41] A. M. Molinaro, R. Simon, and R. M. Pfeiffer, “Prediction error
estimation: a comparison of resampling methods,” Bioinformatics,
vol. 21, no. 15, pp. 3301–3307, 2005.

[42] T. Dietterich, “Overfitting and undercomputing in machine learn-
ing,” ACM Computing Surveys (CSUR), vol. 27, no. 3, pp. 326–327,
1995.

[43] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[44] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.

220 BIBLIOGRAPHY

[45] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[46] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[47] G. V. Kass, “An exploratory technique for investigating large quan-
tities of categorical data,” Applied Statistics, pp. 119–127, 1980.

[48] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, 2001.

[49] B. Schölkopf and C. J. Burges, Advances in kernel methods: support
vector learning. MIT press, 1999.

[50] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf,
“Support vector machines,” IEEE Intelligent Systems and their Appli-
cations, vol. 13, no. 4, pp. 18–28, 1998.

[51] J. Valyon and G. Horváth, “A weighted generalized ls-SVM,” Peri-
odica Polytechnica Electrical Engineering, vol. 47, no. 3-4, pp. 229–252,
2003.

[52] P. Langley, W. Iba, and K. Thompson, “An analysis of bayesian clas-
sifiers,” in AAAI, vol. 90, pp. 223–228, 1992.

[53] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, “Trans-
fer learning using computational intelligence: A survey,” Knowledge-
Based Systems, vol. 80, pp. 14–23, 2015.

[54] D. Pardoe and P. Stone, “Boosting for regression transfer,” in Pro-
ceedings of the 27th International Conference on International Conference
on Machine Learning, pp. 863–870, Omnipress, 2010.

[55] W. Pan, H. Zhong, C. Xu, and Z. Ming, “Adaptive bayesian person-
alized ranking for heterogeneous implicit feedbacks,” Knowledge-
Based Systems, vol. 73, pp. 173–180, 2015.

BIBLIOGRAPHY 221

[56] G.-R. Xue, W. Dai, Q. Yang, and Y. Yu, “Topic-bridged PLSA for
cross-domain text classification,” in Proceedings of the 31st Interna-
tional ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 627–634, 2008.

[57] J. Gao, W. Fan, J. Jiang, and J. Han, “Knowledge transfer via multi-
ple model local structure mapping,” in Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 283–291, 2008.

[58] T. Evgeniou and M. Pontil, “Regularized multi–task learning,” in
Proceedings of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 109–117, 2004.

[59] S. Uguroglu and J. Carbonell, “Feature selection for transfer learn-
ing,” in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 430–442, Springer, 2011.

[60] J. Tahmoresnezhad and S. Hashemi, “An efficient yet effective ran-
dom partitioning and feature weighting approach for transfer learn-
ing,” International Journal of Pattern Recognition and Artificial Intelli-
gence, vol. 30, no. 02, p. 1651003, 2016.

[61] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation
via transfer component analysis,” IEEE Transactions on Neural Net-
works, vol. 22, no. 2, pp. 199–210, 2011.

[62] K. Yan, L. Kou, and D. Zhang, “Learning domain-invariant sub-
space using domain features and independence maximization,”
IEEE Transactions on Cybernetics, vol. 48, no. 1, pp. 288–299, 2018.

[63] D. Koller and M. Sahami, “Toward optimal feature selection,” Tech-
nical Report 1996-77, Stanford InfoLab, February 1996.

222 BIBLIOGRAPHY

[64] P. M. Narendra and K. Fukunaga, “A branch and bound algo-
rithm for feature subset selection,” IEEE Transactions on Computers,
vol. 100, no. 9, pp. 917–922, 1977.

[65] K. Kira and L. A. Rendell, “The feature selection problem: Tradi-
tional methods and a new algorithm,” in AAAI, vol. 2, pp. 129–134,
1992.

[66] M. Dash and H. Liu, “Feature selection for classification,” Intelligent
Data Analysis, vol. 1, no. 1, pp. 131–156, 1997.

[67] H. Liu and L. Yu, “Toward integrating feature selection algorithms
for classification and clustering,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 4, pp. 491–502, 2005.

[68] H. Almuallim and T. G. Dietterich, “Learning boolean concepts
in the presence of many irrelevant features,” Artificial Intelligence,
vol. 69, no. 1, pp. 279–305, 1994.

[69] A. W. Whitney, “A direct method of nonparametric measurement
selection,” IEEE Transactions on Computers, vol. 100, no. 9, pp. 1100–
1103, 1971.

[70] T. Marill and D. M. Green, “On the effectiveness of receptors in
recognition systems,” IEEE Transactions on Information Theory, vol. 9,
no. 1, pp. 11–17, 1963.

[71] G. Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–
28, 2014.

[72] J. C. Ang, A. Mirzal, H. Haron, and H. N. A. Hamed, “Supervised,
unsupervised, and semi-supervised feature selection: a review on
gene selection,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), vol. 13, no. 5, pp. 971–989, 2016.

BIBLIOGRAPHY 223

[73] C. Ding and H. Peng, “Minimum redundancy feature selection from
microarray gene expression data,” Journal of Bioinformatics and Com-
putational Biology, vol. 3, no. 02, pp. 185–205, 2005.

[74] G. H. John, R. Kohavi, K. Pfleger, et al., “Irrelevant features and the
subset selection problem,” in Machine Learning: Proceedings of the
Eleventh International Conference, pp. 121–129, 1994.

[75] M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical
analysis of relieff and rrelieff,” Machine learning, vol. 53, no. 1-2,
pp. 23–69, 2003.

[76] H. Akaike, “Information theory and an extension of the maximum
likelihood principle,” in Selected Papers of Hirotugu Akaike, pp. 199–
213, Springer, 1998.

[77] Y.-J. Hu, “Constructive induction: covering attribute spectrum,” in
Feature Extraction, Construction and Selection, pp. 257–272, Springer,
1998.

[78] U. Kamath, K. De Jong, and A. Shehu, “Effective automated feature
construction and selection for classification of biological sequences,”
PloS one, vol. 9, no. 7, p. e99982, 2014.

[79] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.

[80] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies–a comprehen-
sive introduction,” Natural computing, vol. 1, no. 1, pp. 3–52, 2002.

[81] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection, vol. 1. MIT press, 1992.

[82] L. J. Fogel, A. J. Owens, and M. J. Walsh, “Artificial intelligence
through simulated evolution,” 1966.

224 BIBLIOGRAPHY

[83] J. Kennedy, J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelli-
gence. Morgan Kaufmann, 2001.

[84] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-
heuristic,” in IEEE Congress on Evolutionary Computation, vol. 2,
pp. 1470–1477, 1999.

[85] R. Storn and K. Price, “Differential evolution-a simple and efficient
adaptive scheme for global optimization over continuous spaces
[r],” Berkeley: ICSI, 1995.

[86] J. H. Holland, L. B. Booker, M. Colombetti, M. Dorigo, D. E. Gold-
berg, S. Forrest, R. L. Riolo, R. E. Smith, P. L. Lanzi, W. Stolzmann,
et al., “What is a learning classifier system?,” in International Work-
shop on Learning Classifier Systems, pp. 3–32, Springer, 1999.

[87] J. E. Hunt and D. E. Cooke, “Learning using an artificial immune
system,” Journal of Network and Computer Applications, vol. 19, no. 2,
pp. 189–212, 1996.

[88] J. Kennedy and R. C. Eberhart, “A discrete binary version of the par-
ticle swarm algorithm,” in IEEE International Conference on Systems,
Man, and Cybernetics, vol. 5, pp. 4104–4108, 1997.

[89] K. Sarath and V. Ravi, “Association rule mining using binary parti-
cle swarm optimization,” Engineering Applications of Artificial Intelli-
gence, vol. 26, no. 8, pp. 1832–1840, 2013.

[90] M. A. Taha and D. I. A. al Nadi, “Spectrum sensing for cognitive
radio using binary particle swarm optimization,” Wireless Personal
Communications, vol. 72, no. 4, pp. 2143–2153, 2013.

[91] J. C.-W. Lin, L. Yang, P. Fournier-Viger, T.-P. Hong, and M. Voznak,
“A binary PSO approach to mine high-utility itemsets,” Soft Comput-
ing, pp. 1–19, 2016.

BIBLIOGRAPHY 225

[92] S. Mirjalili and A. Lewis, “S-shaped versus V-shaped transfer func-
tions for binary particle swarm optimization,” Swarm and Evolution-
ary Computation, vol. 9, pp. 1–14, 2013.

[93] Y. Zhang, S. Wang, P. Phillips, and G. Ji, “Binary PSO with mutation
operator for feature selection using decision tree applied to spam
detection,” Knowledge-Based Systems, vol. 64, pp. 22–31, 2014.

[94] J. Yang, H. Zhang, Y. Ling, C. Pan, and W. Sun, “Task allocation
for wireless sensor network using modified binary particle swarm
optimization,” IEEE Sensors Journal, vol. 14, no. 3, pp. 882–892, 2014.

[95] A. H. El-Maleh, A. T. Sheikh, and S. M. Sait, “Binary particle swarm
optimization (BPSO) based state assignment for area minimiza-
tion of sequential circuits,” Applied soft computing, vol. 13, no. 12,
pp. 4832–4840, 2013.

[96] T. Zhai and Z. He, “Instance selection for time series classification
based on immune binary particle swarm optimization,” Knowledge-
Based Systems, vol. 49, pp. 106–115, 2013.

[97] J. Liu, Y. Mei, and X. Li, “An analysis of the inertia weight param-
eter for binary particle swarm optimization,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 5, pp. 666–681, 2016.

[98] B. Tan, H. Huang, H. Ma, and M. Zhang, Binary PSO for Web Ser-
vice Location-Allocation, pp. 366–377. Cham: Springer International
Publishing, 2017.

[99] C. Blum and X. Li, “Swarm intelligence in optimization,” in Swarm
Intelligence, pp. 43–85, Springer, 2008.

[100] C. A. C. Coello, “Evolutionary multiobjective optimization,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 1,
no. 5, pp. 444–447, 2011.

226 BIBLIOGRAPHY

[101] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimiza-
tion: NSGA-II,” Lecture notes in computer science, vol. 1917, pp. 849–
858, 2000.

[102] E. Zitzler, M. Laumanns, L. Thiele, et al., “SPEA2: Improving
the strength pareto evolutionary algorithm,” in Eurogen, vol. 3242,
pp. 95–100, 2001.

[103] M. Reyes-Sierra, C. C. Coello, et al., “Multi-objective particle swarm
optimizers: A survey of the state-of-the-art,” International Journal of
Computational Intelligence Research, vol. 2, no. 3, pp. 287–308, 2006.

[104] M. R. Sierra and C. C. Coello, “Improving PSO-based multi-objective
optimization using crowding, mutation and e-dominance,” in Evolu-
tionary Multi-criterion Optimization, vol. 3410, pp. 505–519, Springer,
2005.

[105] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A survey of
multiobjective evolutionary algorithms based on decomposition,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 3, pp. 440–
462, 2017.

[106] H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima, “Perfor-
mance of decomposition-based many-objective algorithms strongly
depends on pareto front shapes,” IEEE Transactions on Evolutionary
Computation, vol. 21, no. 2, pp. 169–190, 2017.

[107] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “MOEA/D with adap-
tive weight adjustment,” Evolutionary Computation, vol. 22, no. 2,
pp. 231–264, 2014.

[108] C. Zhang, K. C. Tan, L. H. Lee, and L. Gao, “Adjust weight vectors
in MOEA/D for bi-objective optimization problems with discontin-
uous pareto fronts,” Soft Computing, pp. 1–16, 2017.

BIBLIOGRAPHY 227

[109] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Theory of the hyper-
volume indicator: Optimal-distributions and the choice of the refer-
ence point,” in Proceedings of the ACM SIGEVO Workshop on Founda-
tions of Genetic Algorithms, pp. 87–102, 2009.

[110] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjec-
tive selection based on dominated hypervolume,” European Journal
of Operational Research, vol. 181, no. 3, pp. 1653–1669, 2007.

[111] E. T. Jaynes, “Information theory and statistical mechanics,” Physical
review, vol. 106, no. 4, p. 620, 1957.

[112] L. Alfonso, A. Lobbrecht, and R. Price, “Optimization of water level
monitoring network in polder systems using information theory,”
Water Resources Research, vol. 46, no. 12, 2010.

[113] H. A. Sturges, “The choice of a class interval,” Journal of the American
Statistical Association, vol. 21, no. 153, pp. 65–66, 1926.

[114] E. Parzen, “On estimation of a probability density function and
mode,” The annals of mathematical statistics, pp. 1065–1076, 1962.

[115] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Physical review E, vol. 69, no. 6, p. 066138, 2004.

[116] J. T. Lizier, “JIDT: An information-theoretic toolkit for studying the
dynamics of complex systems,” arXiv preprint arXiv:1408.3270, 2014.

[117] S. D. Stearns, “On selecting features for pattern classifiers.,” in Pro-
ceedings of the 3rd International Conference on Pattern Recognition (ICPR
1976), (Coronado, CA), pp. 71–75, 1976.

[118] P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods
in feature selection,” Pattern Recognition Letters, vol. 15, no. 11,
pp. 1119–1125, 1994.

228 BIBLIOGRAPHY

[119] S. Nakariyakul and D. P. Casasent, “An improvement on floating
search algorithms for feature subset selection ,” Pattern Recognition,
vol. 42, no. 9, pp. 1932–1940, 2009.

[120] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[121] J. Lee and D.-W. Kim, “Feature selection for multi-label classification
using multivariate mutual information,” Pattern Recognition Letters,
vol. 34, no. 3, pp. 349–357, 2013.

[122] J. Lee and D.-W. Kim, “Mutual information-based multi-label fea-
ture selection using interaction information,” Expert Systems with
Applications, vol. 42, no. 4, pp. 2013–2025, 2015.

[123] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational
invariance,” in Proceedings of The International Conference on Machine
learning, p. 78, ACM, 2004.

[124] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust fea-
ture selection via joint l2, 1-norms minimization,” in Advances in
Neural Information Processing Systems, pp. 1813–1821, 2010.

[125] N. Kwak, “Principal component analysis based on l1-norm maxi-
mization,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 30, no. 9, pp. 1672–1680, 2008.

[126] J. Tang, S. Alelyani, and H. Liu, “Feature selection for classification:
A review,” Data Classification: Algorithms and Applications, p. 37, 2014.

[127] J. Gui, Z. Sun, S. Ji, D. Tao, and T. Tan, “Feature selection based on
structured sparsity: A comprehensive study,” IEEE Transactions on

BIBLIOGRAPHY 229

Neural Networks and Learning Systems, vol. 28, no. 7, pp. 1490–1507,
2017.

[128] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimisation
for feature selection in classification: Novel initialisation and updat-
ing mechanisms,” Applied Soft Computing, vol. 18, pp. 261–276, 2014.

[129] B. Xue, M. Zhang, and W. N. Browne, “New fitness functions in
binary particle swarm optimisation for feature selection,” in IEEE
Congress on Evolutionary Computation, pp. 1–8, 2012.

[130] B. Xue, M. Zhang, and W. N. Browne, “Novel initialisation and up-
dating mechanisms in pso for feature selection in classification,”
in Applications of Evolutionary Computation, (Berlin, Heidelberg),
pp. 428–438, Springer Berlin Heidelberg, 2013.

[131] S. M. Vieira, L. F. Mendonça, G. J. Farinha, and J. M. Sousa, “Modi-
fied binary PSO for feature selection using svm applied to mortality
prediction of septic patients,” Applied Soft Computing, vol. 13, no. 8,
pp. 3494–3504, 2013.

[132] L.-Y. Chuang, H.-W. Chang, C.-J. Tu, and C.-H. Yang, “Improved
binary PSO for feature selection using gene expression data,” Com-
putational Biology and Chemistry, vol. 32, no. 1, pp. 29–38, 2008.

[133] S. Lee, S. Soak, S. Oh, W. Pedrycz, and M. Jeon, “Modified binary
particle swarm optimization,” Progress in Natural Science, vol. 18,
no. 9, pp. 1161–1166, 2008.

[134] C.-L. Huang and C.-J. Wang, “A GA-based feature selection and pa-
rameters optimization for support vector machines,” Expert Systems
with applications, vol. 31, no. 2, pp. 231–240, 2006.

[135] S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee, “Particle swarm op-
timization for parameter determination and feature selection of sup-

230 BIBLIOGRAPHY

port vector machines,” Expert Systems with Applications, vol. 35, no. 4,
pp. 1817–1824, 2008.

[136] A. Boubezoul and S. Paris, “Application of global optimization
methods to model and feature selection,” Pattern Recognition, vol. 45,
no. 10, pp. 3676–3686, 2012.

[137] M. C. Lane, B. Xue, I. Liu, and M. Zhang, “Particle swarm optimisa-
tion and statistical clustering for feature selection,” in AI 2013: Ad-
vances in Artificial Intelligence, pp. 214–220, Springer, 2013.

[138] M. C. Lane, B. Xue, I. Liu, and M. Zhang, “Gaussian based particle
swarm optimisation and statistical clustering for feature selection,”
in Evolutionary Computation in Combinatorial Optimisation, pp. 133–
144, Springer, 2014.

[139] H. B. Nguyen, B. Xue, I. Liu, and M. Zhang, “PSO and statistical
clustering for feature selection: a new representation,” in Simulated
Evolution and Learning, pp. 569–581, Springer, 2014.

[140] H. B. Nguyen, B. Xue, I. Liu, P. Andreae, and M. Zhang, “Gaus-
sian transformation based representation in particle swarm optimi-
sation for feature selection,” in Applications of Evolutionary Computa-
tion, pp. 541–553, Springer, 2015.

[141] C.-S. Yang, L.-Y. Chuang, C.-H. Ke, and C.-H. Yang, “Boolean binary
particle swarm optimization for feature selection,” in IEEE Congress
on Evolutionary Computation, pp. 2093–2098, 2008.

[142] B. Tran, B. Xue, and M. Zhang, “Improved PSO for feature selection
on high-dimensional datasets,” in Simulated Evolution and Learning,
pp. 503–515, Springer, 2014.

[143] K. Mistry, L. Zhang, S. C. Neoh, C. P. Lim, and B. Fielding, “A micro-
GA embedded PSO feature selection approach to intelligent facial

BIBLIOGRAPHY 231

emotion recognition,” IEEE Transactions on Cybernetics, vol. 47, no. 6,
pp. 1496–1509, 2017.

[144] R. Cheng and Y. Jin, “A competitive swarm optimizer for large
scale optimization,” IEEE Transactions on Cybernetics, vol. 45, no. 2,
pp. 191–204, 2015.

[145] S. Gu, R. Cheng, and Y. Jin, “Feature selection for high-dimensional
classification using a competitive swarm optimizer,” Soft Computing,
vol. 22, no. 3, pp. 811–822, 2018.

[146] F. Wang and J. Liang, “An efficient feature selection algorithm for
hybrid data,” Neurocomputing, vol. 193, pp. 33–41, 2016.

[147] X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen, “Feature selec-
tion based on rough sets and particle swarm optimization,” Pattern
Recognition Letters, vol. 28, no. 4, pp. 459–471, 2007.

[148] L. Cervante, B. Xue, L. Shang, and M. Zhang, “Binary particle swarm
optimisation and rough set theory for dimension reduction in clas-
sification,” in IEEE Congress on Evolutionary Computation, pp. 2428–
2435, 2013.

[149] C. Bae, W.-C. Yeh, Y. Y. Chung, and S.-L. Liu, “Feature selection with
intelligent dynamic swarm and rough set,” Expert Systems with Ap-
plications, vol. 37, no. 10, pp. 7026–7032, 2010.

[150] L. Cervante, B. Xue, L. Shang, and M. Zhang, “A dimension reduc-
tion approach to classification based on particle swarm optimisation
and rough set theory.,” in Australasian Conference on Artificial Intelli-
gence, pp. 313–325, Springer, 2012.

[151] B. Chakraborty and G. Chakraborty, “Fuzzy consistency measure
with particle swarm optimization for feature selection,” in IEEE

232 BIBLIOGRAPHY

International Conference on Systems, Man, and Cybernetics, pp. 4311–
4315, IEEE, 2013.

[152] L. Cervante, B. Xue, M. Zhang, and L. Shang, “Binary particle swarm
optimisation for feature selection: A filter based approach,” in IEEE
Congress on Evolutionary Computation, IEEE, 2012.

[153] H. Nguyen, B. Xue, I. Liu, and M. Zhang, “Filter based backward
elimination in wrapper based PSO for feature selection in classifica-
tion,” in IEEE Congress on Evolutionary Computation, pp. 3111–3118,
2014.

[154] I. Jain, V. K. Jain, and R. Jain, “Correlation feature selection based
improved-binary particle swarm optimization for gene selection
and cancer classification,” Applied Soft Computing, vol. 62, pp. 203
– 215, 2018.

[155] L.-Y. Chuang, C.-S. Yang, K.-C. Wu, and C.-H. Yang, “Gene selec-
tion and classification using taguchi chaotic binary particle swarm
optimization,” Expert Systems with Applications, vol. 38, no. 10,
pp. 13367–13377, 2011.

[156] B. Xue, M. Zhang, and W. N. Browne, “Multi-objective particle
swarm optimisation (PSO) for feature selection,” in Proceedings of
the 14th Annual conference on Genetic and Evolutionary Computation,
pp. 81–88, ACM, 2012.

[157] Y. Li, S. Zhang, and X. Zeng, “Research of multi-population agent
genetic algorithm for feature selection,” Expert Systems with Applica-
tions, vol. 36, no. 9, pp. 11570–11581, 2009.

[158] J. Derrac, S. García, and F. Herrera, “A first study on the use of co-
evolutionary algorithms for instance and feature selection,” in Hy-
brid Artificial Intelligence Systems, pp. 557–564, Springer, 2009.

BIBLIOGRAPHY 233

[159] S. Oreski and G. Oreski, “Genetic algorithm-based heuristic for fea-
ture selection in credit risk assessment,” Expert systems with applica-
tions, vol. 41, no. 4, pp. 2052–2064, 2014.

[160] L. Wang, “A hybrid genetic algorithm–neural network strategy
for simulation optimization,” Applied Mathematics and Computation,
vol. 170, no. 2, pp. 1329–1343, 2005.

[161] F. Lin, D. Liang, C.-C. Yeh, and J.-C. Huang, “Novel feature selec-
tion methods to financial distress prediction,” Expert Systems with
Applications, vol. 41, no. 5, pp. 2472–2483, 2014.

[162] P. N. da Silva, A. Plastino, and A. A. Freitas, “A novel genetic al-
gorithm for feature selection in hierarchical feature spaces,” in Pro-
ceedings of the 2018 SIAM International Conference on Data Mining,
pp. 738–746, SIAM, 2018.

[163] A. A. Chaaraoui and F. Flórez-Revuelta, “Human action recognition
optimization based on evolutionary feature subset selection,” in Pro-
ceedings of the 15th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 1229–1236, ACM, 2013.

[164] J.-H. Seo, Y. H. Lee, and Y.-H. Kim, “Feature selection for very short-
term heavy rainfall prediction using evolutionary computation,”
Advances in Meteorology, vol. 2014, 2014.

[165] D. Liang, C.-F. Tsai, and H.-T. Wu, “The effect of feature selection
on financial distress prediction,” Knowledge-Based Systems, vol. 73,
pp. 289–297, 2015.

[166] D. Paul, R. Su, M. Romain, V. Sébastien, V. Pierre, and G. Isabelle,
“Feature selection for outcome prediction in oesophageal cancer us-
ing genetic algorithm and random forest classifier,” Computerized
Medical Imaging and Graphics, vol. 60, pp. 42–49, 2017.

234 BIBLIOGRAPHY

[167] S. Jiang, K.-S. Chin, L. Wang, G. Qu, and K. L. Tsui, “Modified ge-
netic algorithm-based feature selection combined with pre-trained
deep neural network for demand forecasting in outpatient depart-
ment,” Expert Systems with Applications, vol. 82, pp. 216–230, 2017.

[168] A. Mukhopadhyay and U. Maulik, “An SVM-wrapped multiobjec-
tive evolutionary feature selection approach for identifying cancer-
microRNA markers,” IEEE Transactions on Nanobioscience, vol. 12,
no. 4, pp. 275–281, 2013.

[169] C. J. Tan, C. P. Lim, and Y.-N. Cheah, “A multi-objective evolu-
tionary algorithm-based ensemble optimizer for feature selection
and classification with neural network models,” Neurocomputing,
vol. 125, pp. 217–228, 2014.

[170] U. Singh and S. N. Singh, “Optimal feature selection via NSGA-II
for power quality disturbances classification,” IEEE Transactions on
Industrial Informatics, pp. 1–1, 2017.

[171] Y. Zhu, J. Liang, J. Chen, and Z. Ming, “An improved NSGA-III algo-
rithm for feature selection used in intrusion detection,” Knowledge-
Based Systems, vol. 116, pp. 74 – 85, 2017.

[172] R. Hunt, K. Neshatian, and M. Zhang, “A genetic programming ap-
proach to hyper-heuristic feature selection,” in Asia-Pacific Confer-
ence on Simulated Evolution and Learning, pp. 320–330, Springer, 2012.

[173] U. Bhowan and D. McCloskey, “Genetic programming for feature
selection and question-answer ranking in IBM Watson,” in Genetic
Programming, pp. 153–166, Springer, 2015.

[174] D. Y. Harvey and M. D. Todd, “Automated feature design for nu-
meric sequence classification by genetic programming,” IEEE Trans-
actions on Evolutionary Computation, vol. 19, no. 4, pp. 474–489, 2015.

BIBLIOGRAPHY 235

[175] Q. Chen, M. Zhang, and B. Xue, “Feature selection to improve gen-
eralisation of genetic programming for high-dimensional symbolic
regression,” IEEE Transactions on Evolutionary Computation, vol. 21,
no. 5, pp. 792–806, 2017.

[176] F. Viegas, L. Rocha, M. GonÃğalves, F. MourÃčo, G. SÃą, T. Salles,
G. Andrade, and I. Sandin, “A genetic programming approach for
feature selection in highly dimensional skewed data,” Neurocomput-
ing, vol. 273, pp. 554 – 569, 2018.

[177] R. N. Khushaba, A. Al-Ani, A. AlSukker, and A. Al-Jumaily, “A com-
bined ant colony and differential evolution feature selection algo-
rithm,” in Ant Colony Optimization and Swarm Intelligence, pp. 1–12,
Springer, 2008.

[178] R. N. Khushaba, A. Al-Ani, and A. Al-Jumaily, “Feature subset selec-
tion using differential evolution and a statistical repair mechanism,”
Expert Systems with Applications, vol. 38, no. 9, pp. 11515–11526, 2011.

[179] B. Xue, W. Fu, and M. Zhang, “Multi-objective feature selection in
classification: A differential evolution approach,” in Simulated Evo-
lution and Learning, vol. 8886 of Lecture Notes in Computer Science,
pp. 516–528, Springer International Publishing, 2014.

[180] E. Hancer, B. Xue, and M. Zhang, “Differential evolution for filter
feature selection based on information theory and feature ranking,”
Knowledge-Based Systems, vol. 140, pp. 103 – 119, 2018.

[181] A. Al-Dujaili, M. R. Tanweer, and S. Suresh, “DE vs. PSO: A per-
formance assessment for expensive problems,” in IEEE Symposium
Series on Computational Intelligence, pp. 1711–1718, 2015.

[182] L. D. Vignolo, D. H. Milone, and J. Scharcanski, “Feature selection
for face recognition based on multi-objective evolutionary wrap-

236 BIBLIOGRAPHY

pers,” Expert Systems with Applications, vol. 40, no. 13, pp. 5077 –
5084, 2013.

[183] B. Huang, B. Buckley, and T.-M. Kechadi, “Multi-objective fea-
ture selection by using NSGA-II for customer churn prediction in
telecommunications,” Expert Systems with Applications, vol. 37, no. 5,
pp. 3638–3646, 2010.

[184] C. J. Tan, C. P. Lim, and Y. Cheah, “A multi-objective evolutionary
algorithm-based ensemble optimizer for feature selection and clas-
sification with neural network models,” Neurocomputing, vol. 125,
pp. 217 – 228, 2014.

[185] E. De la Hoz, E. de la Hoz, A. Ortiz, J. Ortega, and A. Martínez-
Álvarez, “Feature selection by multi-objective optimisation: Appli-
cation to network anomaly detection by hierarchical self-organising
maps,” Knowledge-Based Systems, vol. 71, pp. 322–338, 2014.

[186] B. Xue, M. Zhang, and W. N. Browne, “Multi-objective particle
swarm optimisation (PSO) for feature selection,” in Proceedings of the
Annual Conference on Genetic and Evolutionary Computation, pp. 81–88,
2012.

[187] B. Xue, L. Cervante, L. Shang, W. N. Browne, and M. Zhang, “A
multi-objective particle swarm optimisation for filter-based feature
selection in classification problems,” Connection Science, vol. 24,
no. 2-3, pp. 91–116, 2012.

[188] H. B. Nguyen, B. Xue, I. Liu, P. Andreae, and M. Zhang, “New mech-
anism for archive maintenance in PSO-based multi-objective feature
selection,” Soft Computing, vol. 20, no. 10, pp. 3927–3946, 2016.

[189] B. Xue, W. Fu, and M. Zhang, “Multi-objective feature selection in
classification: a differential evolution approach,” in Proceedings of

BIBLIOGRAPHY 237

the 10th International Conference on Simulated Evolution and Learning,
pp. 516–528, Springer, 2014.

[190] S. Paul and S. Das, “Simultaneous feature selection and weighting–
an evolutionary multi-objective optimization approach,” Pattern
Recognition Letters, vol. 65, pp. 51–59, 2015.

[191] S. J. Pan, J. T. Kwok, and Q. Yang, “Transfer learning via dimension-
ality reduction.,” in AAAI, vol. 8, pp. 677–682, 2008.

[192] K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf,
and A. J. Smola, “Integrating structured biological data by kernel
maximum mean discrepancy,” Bioinformatics, vol. 22, no. 14, pp. e49–
e57, 2006.

[193] Y. Shi and F. Sha, “Information-theoretical learning of discrimina-
tive clusters for unsupervised domain adaptation,” in Proceedings of
the 29th International Coference on International Conference on Machine
Learning, ICML’12, pp. 1275–1282, 2012.

[194] Z. Cui, W. Li, D. Xu, S. Shan, X. Chen, and X. Li, “Flowing on rieman-
nian manifold: Domain adaptation by shifting covariance,” IEEE
Transactions on Cybernetics, vol. 44, no. 12, pp. 2264–2273, 2014.

[195] J. Walters-Williams and Y. Li, “Estimation of mutual information:
A survey,” in Rough Sets and Knowledge Technology, pp. 389–396,
Springer, 2009.

[196] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning, vol. 1. Springer series in statistics Springer, Berlin, 2001.

[197] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” ACM
SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

238 BIBLIOGRAPHY

[198] M. Lungarella, T. Pegors, D. Bulwinkle, and O. Sporns, “Methods for
quantifying the informational structure of sensory and motor data,”
Neuroinformatics, vol. 3, no. 3, pp. 243–262, 2005.

[199] F. Van Den Bergh, An analysis of particle swarm optimizers. PhD thesis,
University of Pretoria, 2006.

[200] Y. Zhang, S. Wang, and G. Ji, “A comprehensive survey on particle
swarm optimization algorithm and its applications,” Mathematical
Problems in Engineering, vol. 2015, 2015.

[201] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability,
and convergence in a multidimensional complex space,” IEEE Trans-
actions on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[202] F. van den Bergh and A. Engelbrecht, “A study of particle swarm op-
timization particle trajectories,” Information Sciences, vol. 176, no. 8,
pp. 937 – 971, 2006.

[203] M. A. Khanesar, M. Teshnehlab, and M. A. Shoorehdeli, “A novel
binary particle swarm optimization,” in Mediterranean Conference on
Control Automation(MED)., pp. 1–6, 2007.

[204] A. P. Engelbrecht and G. Pampara, “Binary differential evolution
strategies,” in IEEE Congress on Evolutionary Computation, pp. 1942–
1947, 2007.

[205] H. bin Ouyang, L. qun Gao, S. Li, and X. yong Kong, “Improved
global-best-guided particle swarm optimization with learning op-
eration for global optimization problems,” Applied Soft Computing,
vol. 52, pp. 987 – 1008, 2017.

[206] M. Chih, C.-J. Lin, M.-S. Chern, and T.-Y. Ou, “Particle swarm op-
timization with time-varying acceleration coefficients for the mul-
tidimensional knapsack problem,” Applied Mathematical Modelling,
vol. 38, no. 4, pp. 1338 – 1350, 2014.

BIBLIOGRAPHY 239

[207] L. F. Mingo López, N. Gómez Blas, and A. Arteta Albert, “Multidi-
mensional knapsack problem optimization using a binary particle
swarm model with genetic operations,” Soft Computing, pp. 1–16,
2017.

[208] B. Haddar, M. Khemakhem, S. Hanafi, and C. Wilbaut, “A hy-
brid quantum particle swarm optimization for the multidimensional
problem,” Engineering Applications of Artificial Intelligence, vol. 55,
pp. 1 – 13, 2016.

[209] M. F. Tasgetiren, Q. K. Pan, D. Kizilay, and G. Suer, “A differential
evolution algorithm with variable neighborhood search for multi-
dimensional knapsack problem,” in IEEE Congress on Evolutionary
Computation, pp. 2797–2804, 2015.

[210] D. Libao, W. Sha, J. Chengyu, and H. Cong, “A hybrid mutation
scheme-based discrete differential evolution algorithm for multidi-
mensional knapsack problem,” in Sixth International Conference on
Instrumentation Measurement, Computer, Communication and Control
(IMCCC), pp. 1009–1014, 2016.

[211] A. Rezoug, D. Boughaci, and M. Badr-El-Den, Memetic Algorithm
for Solving the 0-1 Multidimensional Knapsack Problem, pp. 298–304.
Cham: Springer International Publishing, 2015.

[212] J. P. Martins, H. Longo, and A. C. Delbem, “On the effectiveness of
genetic algorithms for the multidimensional knapsack problem,” in
Proceedings of the Companion Publication of the Annual Conference on
Genetic and Evolutionary Computation, GECCO Comp ’14, pp. 73–74,
2014.

[213] H. Ishibuchi, N. Akedo, and Y. Nojima, “Behavior of multiobjective
evolutionary algorithms on many-objective knapsack problems,”

240 BIBLIOGRAPHY

IEEE Transactions on Evolutionary Computation, vol. 19, no. 2, pp. 264–
283, 2015.

[214] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimization
for feature selection in classification: A multi-objective approach,”
IEEE Transactions on Cybernetics, vol. 43, no. 6, pp. 1656–1671, 2013.

[215] F. Glover and G. A. Kochenberger, “Critical event tabu search for
multidimensional knapsack problems,” in Meta-Heuristics, pp. 407–
427, Springer, 1996.

[216] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, “Adaptive particle
swarm optimization,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics), vol. 39, no. 6, pp. 1362–1381, 2009.

[217] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust fea-
ture selection via joint l2,1-norms minimization,” in Advances in Neu-
ral Information Processing Systems 23, pp. 1813–1821, Curran Asso-
ciates, Inc., 2010.

[218] J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad,
and J. Kittler, “A review of instance selection methods,” Artificial
Intelligence Review, vol. 34, no. 2, pp. 133–143, 2010.

[219] F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative
clustering method: which algorithms implement ward’s criterion?,”
Journal of Classification, vol. 31, no. 3, pp. 274–295, 2014.

[220] D. R. Wilson and T. R. Martinez, “Reduction techniques for instance-
based learning algorithms,” Machine Learning, vol. 38, no. 3, pp. 257–
286, 2000.

[221] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010.

BIBLIOGRAPHY 241

[222] Y. Jin, “Surrogate-assisted evolutionary computation: Recent ad-
vances and future challenges,” Swarm and Evolutionary Computation,
vol. 1, no. 2, pp. 61 – 70, 2011.

[223] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Adapta-
tion of scalarizing functions in MOEA/D: An adaptive scalariz-
ing function-based multiobjective evolutionary algorithm,” in Evo-
lutionary Multi-criterion Optimization, pp. 438–452, Springer, 2009.

[224] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and eli-
tist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[225] A. Jaszkiewicz, “On the computational efficiency of multiple ob-
jective metaheuristics. the knapsack problem case study,” European
Journal of Operational Research, vol. 158, no. 2, pp. 418–433, 2004.

[226] V. A. Shim, K. C. Tan, and C. Y. Cheong, “A hybrid estimation of dis-
tribution algorithm with decomposition for solving the multiobjec-
tive multiple traveling salesman problem,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42,
no. 5, pp. 682–691, 2012.

[227] C. P. Almeida, R. A. Gonçalves, E. F. Goldbarg, M. C. Goldbarg, and
M. R. Delgado, “An experimental analysis of evolutionary heuris-
tics for the biobjective traveling purchaser problem,” Annals of Op-
erations Research, vol. 199, no. 1, pp. 305–341, 2012.

[228] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genetic
search and local search in memetic algorithms for multiobjective
permutation flowshop scheduling,” IEEE Transactions on Evolution-
ary Computation, vol. 7, no. 2, pp. 204–223, 2003.

[229] M. Asafuddoula, T. Ray, and R. Sarker, “A decomposition-based
evolutionary algorithm for many objective optimization,” IEEE

242 BIBLIOGRAPHY

Transactions on Evolutionary Computation, vol. 19, no. 3, pp. 445–460,
2015.

[230] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and decom-
position,” IEEE Transactions on Evolutionary Computation, vol. 19,
no. 5, pp. 694–716, 2015.

[231] Y. Yuan, H. Xu, B. Wang, and X. Yao, “A new dominance relation-
based evolutionary algorithm for many-objective optimization,”
IEEE Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 16–
37, 2016.

[232] K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang, “Stable matching-
based selection in evolutionary multiobjective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 18, no. 6, pp. 909–923,
2014.

[233] H.-L. Liu, F. Gu, and Q. Zhang, “Decomposition of a multiobjective
optimization problem into a number of simple multiobjective sub-
problems,” IEEE Transactions on Evolutionary Computation, vol. 18,
no. 3, pp. 450–455, 2014.

[234] F. Gu and Y.-M. Cheung, “Self-organizing map-based weight de-
sign for decomposition-based many-objective evolutionary algo-
rithm,” IEEE Transactions on Evolutionary Computation, 2017, DOI:
10.1109/TEVC.2017.2695579.

[235] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector
guided evolutionary algorithm for many-objective optimization,”
IEEE Transactions on Evolutionary Computation, vol. 20, no. 5, pp. 773–
791, 2016.

[236] H. Ishibuchi, M. Yamane, and Y. Nojima, “Difficulty in evolution-
ary multiobjective optimization of discrete objective functions with

BIBLIOGRAPHY 243

different granularities,” in International Conference on Evolutionary
Multi-Criterion Optimization, pp. 230–245, Springer, 2013.

[237] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting ap-
proach, part i: Solving problems with box constraints.,” IEEE Trans-
actions on Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

[238] S. Jiang and S. Yang, “A strength pareto evolutionary algo-
rithm based on reference direction for multiobjective and many-
objective optimization,” IEEE Transactions on Evolutionary Computa-
tion, vol. 21, no. 3, pp. 329–346, 2017.

[239] Q. Zhang, W. Liu, and H. Li, “The performance of a new version
of MOEA/D on CEC09 unconstrained MOP test instances,” in IEEE
Congress on Evolutionary Computation, pp. 203–208, 2009.

[240] A. Zhou and Q. Zhang, “Are all the subproblems equally important?
resource allocation in decomposition-based multiobjective evolu-
tionary algorithms,” IEEE Transactions on Evolutionary Computation,
vol. 20, no. 1, pp. 52–64, 2016.

[241] Y. Yuan, H. Xu, and B. Wang, “An improved NSGA-III procedure
for evolutionary many-objective optimization,” in Proceedings of the
Annual Conference on Genetic and Evolutionary Computation, pp. 661–
668, 2014.

[242] Q. Zhang, H. Li, D. Maringer, and E. Tsang, “MOEA/D with NBI-
style tchebycheff approach for portfolio management,” in IEEE
Congress on Evolutionary Computation, pp. 1–8, 2010.

[243] I. Giagkiozis, R. C. Purshouse, and P. J. Fleming, “Towards under-
standing the cost of adaptation in decomposition-based optimiza-
tion algorithms,” in IEEE International Conference on Systems, Man,
and Cybernetics, pp. 615–620, 2013.

244 BIBLIOGRAPHY

[244] K. Miettinen, Nonlinear multiobjective optimization, vol. 12. Springer
Science and Business Media, 2012.

[245] H. B. Nguyen, B. Xue, H. Ishibuchi, P. Andreae, and M. Zhang,
“Multiple reference points MOEA/D for feature selection,” in Pro-
ceedings of the Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 157–158, 2017.

[246] J. D. Knowles, L. Thiele, and E. Zitzler, “A tutorial on the per-
formance assessment of stochastic multiobjective optimizers,” TIK-
Report, vol. 214, 2006.

[247] A. J. Nebro, J. J. Durillo, and M. Vergne, “Redesigning the jMetal
multi-objective optimization framework,” in Proceedings of the An-
nual Conference on Genetic and Evolutionary Computation, pp. 1093–
1100, 2015.

[248] R. Gopalan, R. Li, and R. Chellappa, “Domain adaptation for ob-
ject recognition: An unsupervised approach,” in IEEE International
Conference on Computer Vision, pp. 999–1006, 2011.

[249] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2066–2073, 2012.

[250] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and trans-
ferring mid-level image representations using convolutional neural
networks,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 1717–1724, 2014.

[251] L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, “Feature
selection via dependence maximization,” Journal of Machine Learning
Research, vol. 13, no. May, pp. 1393–1434, 2012.

[252] L. Song, B. Boots, S. M. Siddiqi, G. J. Gordon, and A. Smola, “Hilbert
space embeddings of hidden markov models,” 2010.

BIBLIOGRAPHY 245

[253] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

[254] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring
statistical dependence with hilbert-schmidt norms,” in International
Conference on Algorithmic Learning Theory, pp. 63–77, Springer, 2005.

[255] B. Tran, B. Xue, and M. Zhang, “Genetic programming for fea-
ture construction and selection in classification on high-dimensional
data,” Memetic Computing, vol. 8, no. 1, pp. 3–15, 2015.

[256] H. B. Nguyen, B. Xue, and P. Andreae, “A hybrid GA-GP method
for feature reduction in classification,” in Asia-Pacific Conference on
Simulated Evolution and Learning, pp. 591–604, Springer, 2017.

