Lacking an effective strategy to simultaneously address the challenges of quantum efficiency, luminescence intensity and thermal stability has become the key bottleneck
for further development and large-scale application of solid-state lighting technology. Herein, inspired by the defect-engineering used in photoelectrocatalytic and photovoltaic materials, we acted in a diametrically opposite way and unprecedentedly proposed an anti-defect engineering strategy to develop high-efficiency phosphors. By constructing a rigid structure and introducing alkali metals to remove cation vacancy defects, similar to building blocks and jigsaw puzzle, we developed three groups of whitlockite phosphors, namely Ca3-xSrx(PO4)2:Ce3+, Ca3(PO4)2:Ce3+,M and (Ca0.5Sr0.5)3(PO4)2:Ce3+,Na+,Mn2+, and synchronously realized the significant of photoluminescence intensity (2.46 times), thermal stability (87.92% at 150 °C), cathodoluminescence intensity (3.34 times), quantum yield (from 38.90% to 99.07%). We characterized the defect concentration by positron annihilation lifetime spectrum, and calculated Debye temperature and simulated the occupation of M according to DFT theory to reveal the improvement mechanism. Some advanced applications were also explored in this work, including warm-white LEDs, plant growth lighting and information security. The anti-defect engineering proposed in this work may contribute to the further development of high-efficiency phosphors for the next-generation smart solid-state lighting technologies.