figshare
Browse

HMRLBA_V1.0

Download (109.27 MB)
Version 8 2025-03-17, 04:40
Version 7 2025-03-15, 14:48
Version 6 2025-03-15, 12:57
Version 5 2025-03-15, 12:11
Version 4 2025-03-11, 13:01
Version 3 2024-11-14, 07:47
Version 2 2024-11-14, 07:14
Version 1 2024-11-13, 07:42
software
posted on 2025-03-17, 04:40 authored by Zhenyu HuangZhenyu Huang

HMRLBA

This is a repository to deposit the data and code for HMRLBA model. HMRLBA is a hierarchical multi-scale representation learning model for predicting protein-ligand binding affinity.

Main files

Datasets:

a). Raw_data: Three PDBbind v2019 benchmark datasets, CASF-2016 dataset from PDBbind v2016, filtered dataset from BindingDB and Enzyme classification dataset.

b). Hard_samples: 21 hard samples.

c). Virtual screening: 1). SMILES strings of 2616 FDA-approved drugs and 18 EGFR inhibitors. 2) The BindingDB dataset includes 69 testing samples. Among them, seven compounds specifically bind to the target protein Dot1L (pdb_id 1NW3).

d). PDB_id_list: The protein list of different dataset split.

hmrlba_code: Main code file for the HMRLBA model.

PLMs: Three protein language models - ESM-1b, Ankh, ProtTrans.

SOTA: Comparative methods used in the contrast experiments.

Configuration

It is recommended to use the conda environment (python 3.7), mainly installing the following dependencies:

  • pytorch (1.9.0)、torch-geometric (2.0.4)、dgl-cu111 (0.6.1)、cudatoolkit (11.1.74)
  • msms (2.6.1)、dssp (3.0.0)、blender (3.5.1)、pdb2pqr (2.1.1) 、biopython (1.79)、rdkit (2023.3.1)、transformers (4.24.0)、wandb (0.15.4)、pymesh2 (0.3)、pdbfixer (1.6)

See environment.yaml for details.

How to use

refer to https://github.com/NJAU-CDSIC/HMRLBA_V1.0

History

Usage metrics

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC