figshare
Browse
ARCHIVE
samples.zip (836.17 kB)
ARCHIVE
samples_W.zip (2.11 MB)
DATASET
bicm_mat.csv (4.21 kB)
DATASET
bicm_matW.csv (4.25 kB)
TEXT
Fit_BiCM.py (2.39 kB)
TEXT
Fit_WBiCM.py (5.15 kB)
DOCUMENT
Bipartite Binary Configuration model.docx.docx (15.36 kB)
DOCUMENT
Bipartite Weighted Configuration model.docx.docx (18.09 kB)
TEXT
Bipartite.R (9.7 kB)
TEXT
Bipartite_W.R (11.92 kB)
1/0
10 files

Fluctuating ecological networks: a synthesis of maximum-entropy approaches for pattern detection and process inference - Computer codes and Data examples

software
posted on 2022-08-25, 12:08 authored by Tancredi CarusoTancredi Caruso, Giulio Virginio Clemente, Matthias C Rillig, Diego Garlaschelli

This repository contains: 


- the Python script “Fit_BiCM.py” to fit a binary configuration model to a bipartite network 

- the Python script “Fit_WBiCM.py” to fit a weighted, bipartite configuration model but that can also account for information on the degree sequence 

- the R code Bipartite.R to analyse the data contained in the folder "samples" and generated by Fit_BiCM.py applied to the data in "bicm_mat.csv"

- the R Code Bipartite_W.R to analyse the data contained in the folder "samples_W" and generated by Fit_WBiCM.py applied to the data in "bicm_matW.csv"

- the Guideline document "Bipartite Binary Configuration model.docx" that explains the flowork to fit a binary configuration model to a bipartite network using the code Fit_BiCM.py, which uses the existing (and tested) Python package bicm2 (https://pypi.org/project/bicm/) 

- The Guideline document "Bipartite Weighted Configuration model.docx" that explains the flowork to fit a weighted configuration model to a weighted bipartite network using the code  “Fit_WBiCM.py”, which uses the existing (and tested) Python package NEMtropy (https://pypi.org/project/NEMtropy/).


For a formal and open source description of the fundamental routines used by the codes uploaded here, and for testing the routines, check  https://pypi.org/project/bicm/ and https://pypi.org/project/NEMtropy/


Further details are also available in the Maximum Entropy Hub at https://meh.imtlucca.it/codes.






Funding

Earth Institute at University College Dublin

History

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC