
Towards Optimal Parallelism-Aware Service Chaining and
Embedding
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY-SA 4.0

SUBMISSION DATE / POSTED DATE

30-11-2021 / 09-12-2021

CITATION

Zheng, Danyang; Shen, Gangxiang; Cao, Xiaojun; Mukherjee, Biswanath (2021): Towards Optimal
Parallelism-Aware Service Chaining and Embedding. TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.17099120.v1

DOI

10.36227/techrxiv.17099120.v1

https://www.techrxiv.org
https://dx.doi.org/10.36227/techrxiv.17099120.v1

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 1

Towards Optimal Parallelism-Aware Service
Chaining and Embedding

Danyang Zheng, Member, IEEE, Gangxiang Shen∗, Senior Member, IEEE, Xiaojun Cao, Senior Member, IEEE,
and Biswanath Mukherjee, Fellow, IEEE

Abstract—Emerging 5G technologies can significantly reduce
end-to-end service latency for applications requiring strict quality
of service (QoS). With network function virtualization (NFV), to
complete a client’s request from those applications, the client’s
data can sequentially go through multiple service functions (SFs)
for processing/analysis but introduce additional processing delay.
To reduce the processing delay from the serially-running SFs,
network function parallelism (NFP) that allows multiple SFs to
run in parallel is introduced. In this work, we study how to
apply NFP into the SF chaining and embedding process such
that the latency, including processing and propagation delays,
can be jointly minimized. We introduce a novel augmented
graph to address the parallel relationship constraint among
the required SFs. Considering parallel relationship constraints,
we propose a novel problem called parallelism-aware service
function chaining and embedding (PSFCE). For this problem, we
propose a near-optimal maximum parallel block gain (MPBG)
first optimization algorithm when computing resources at each
physical node are enough to host the required SFs. When comput-
ing resources are limited, we propose a logarithm-approximate
algorithm, called parallelism-aware SFs deployment (PSFD), to
jointly optimize processing and propagation delays. We conduct
extensive simulations on multiple network scenarios to evaluate
the performances of our schemes. Accordingly, we find that (i)
MPBG is near-optimal, (ii) the optimization of end-to-end service
latency largely depends on the processing delay in small networks
and is impacted more by the propagation delay in large networks,
and (iii) PSFD outperforms the schemes directly extended from
existing works regarding end-to-end latency.

Index Terms—Network function virtualization, Network func-
tion parallelism, Parallelism-aware service function chaining and
embedding, Approximation algorithm.

I. INTRODUCTION

Network function virtualization (NFV) implements network
functions (e.g., firewall, parental control) that run on traditional
dedicated hardware to software-based modules, called virtual
network functions (VNFs) or service functions (SFs) [1]–
[3]. In the NFV paradigm, the client’s NFV service request
(NSR) includes the service source, destination, a set of SFs,
and corresponding network resource demands (e.g., computing
resource, bandwidth) [3]. To meet the client’s request, the
service provider can concatenate the required SFs into a
service function chain (SFC) and embed it onto a shared

D. Zheng, G. Shen, and B. Mukherjee are with Suzhou Key Laboratory
of Advanced Optical Communication Network Technology in the School
of Electronic and Information Engineering, Soochow University, Suzhou,
215006, China (e-mail: dyzheng@suda.edu.cn, shengx@suda.edu.cn, and
bmukherjee@ucdavis.edu).

X. Cao is with the Department of Computer Science, Georgia State
University, Atlanta, GA, 30302 USA (e-mail: cao@gsu.edu).

G. Shen is the corresponding author of this work.

physical network (PN) [4], [5]. The process of accommodating
an NSR by composing and embedding an SFC onto a shared
PN is referred to as service function chaining and embedding
(SFCE). The physical forwarding path established by SFCE is
called the service function path (SFP).

Recently, NFV techniques are applied in 5G networks to
facilitate the low-lantecy service delivery [6]–[9], where 5G
technologies are designed to significantly reduce latency (as
much as 10x) [10]–[12]. Under such scenarios, the total
processing delay from the serially-running SFs in an SFC
may be comparable to the propagation delay and could be
the bottleneck of optimizing the overall end-to-end latency for
SFC delivery [13], [14]. To mitigate the impact caused by this
bottleneck, network function parallelism (NFP) is introduced
to run multiple SFs from the same request parallelly at one
physical node (e.g., commercial/edge server) [13]. As a result,
the processing delay of SFs working in parallel can be reduced
from their processing delay sum (i.e., serially running SFs)
to the highest processing delay among them (i.e., parallelly
running SFs). According to [13], two SFs can be executed in
parallel only if their operations do not conflict. For example,
a flow monitor (FM) only monitors the client’s data stream
without any modifications, which can be operated with deep
packet inspection (DPI) parallelly. On the contrary, both DPI
and encryption might modify packets; thus, they cannot work
in parallel. The constraint on whether two SFs can work in
parallel or not is referred to as parallel relationship constraint.

When applying NFP to deliver SFC services with ultra-
low latency requirements, we need to jointly optimize SFs’
processing delay and the SFP propagation delay. Ideally, a
physical node with enough computing resources can run many
SFs in parallel to reduce SFs’ processing delay, while SFP
propagation delay can be reduced through embedding the
required SFs along the shortest path connecting the service
source and the destination. In practice, due to limited com-
puting resources at each physical node, greedily minimizing
SFs’ processing delay may end up with increasing the SFP
propagation delay. For example, a physical node with enough
computing resources (e.g., a datacenter) may be geographically
far away from both service source and destination, which may
require a long physical routing path. In the literature, to reduce
the latency of delivering a client’s service, many existing
works have focused on minimizing SFP length/propagation
delay in SFCE, where SFs’ processing delay is regarded as
fixed or ignored [15]–[33]. The problem of how to apply NFP
into SFCE to optimize the end-to-end latency is challenging.

In this work, we investigate how to efficiently apply NFP

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 2

into SFCE such that the end-to-end latency (including SFs’
processing delay and the SFP propagation delay) of delivering
parallelism-based services can be minimized. We introduce a
novel augmented graph, called parallel graph (PG), to address
the parallel relationship constraints. Considering parallel rela-
tionship constraints, we mathematically model the parallelism-
aware service chaining and embedding (PSFCE) problem with
the goal of jointly minimizing the SFs’ processing delay and
the SFP propagation delay. Next, we prove that the PSFCE
problem is NP-hard under various network scenarios. For
this NP-hard problem, we propose two efficient heuristic
algorithms called maximum parallel block gain (MPBG) first
optimization and parallelism-aware SFs deployment (PSFD)
to optimize the end-to-end service latency. Meanwhile, we
show that MPBG can achieve the optimal performance in some
scenarios and PSFD is generally logarithm-approximate. We
conduct extensive simulations to evaluate the performances of
our proposed algorithms. Specifically, we show that (i) MPBG
is near-optimal, (ii) the optimization of the end-to-end service
latency largely depends on SFs’ processing delay in small
networks and is impacted more by the SFP propagation delay
in large networks, (iii) to achieve latency-efficient service
delivery in edge-cloud systems, short parallelism-aware SFCs
(less than 10 SFs) should be deployed at the edge, while long
parallelism-aware SFCs should be deployed in the cloud, and
(iv) PSFD outperforms the schemes that are directly extended
from existing works regarding the end-to-end latency.

The rest of this paper is organized as follows. Section II
summarizes related work, while Section III introduces network
function parallelism and parallelism-based SFC (P-SFC). We
formulate the problem of parallelism-aware service function
chaining and embedding (PSFCE) in Section IV. In Sections
V, VI, and VII, we analyze the NP-hardness of PSFCE and
present novel analysis and algorithms to optimize it in various
network scenarios. Section VIII analyzes experimental results.
We conclude our work in Section IX.

II. RELATED WORK

With network function virtualization (NFV), service
providers can save operating expense (OpEx) and capital ex-
penditure (CapEx) by flexibly implementing network functions
as virtual modules [1]–[3]. Recently, NFV drew great atten-
tion from academia and industry [34]–[36]. When applying
NFV techniques to emerging systems such as 5G networks,
multi-access edge computing (MEC) systems, and large-scale
deterministic networks, the QoS and service level agreements
(SLAs) may require NFV services to be delivered within ultra-
low latency [6]–[9], [33], [37], [38].

To satisfy ultra-low latency requirements, much work has
been done to optimize SFP length/propagation delay [15]–[33].
When delivering service as a traditional SFC (linear logical
structure), authors in [15] proposed a heuristic algorithm by
applying the betweenness centrality technique to minimize
the number of hops and hence the propagation delay. When
the client has specific QoS requirements, authors in [16]
formulated the QoS-aware and reliable traffic steering (QRTS)
problem and proposed an approximate algorithm by applying

the primal and dual technique. When the SFC is given a
priori, authors in [17] developed SFC-constrained shortest-path
schemes with the transformation of network graphs. To opti-
mize propagation delay in the scenario of online/continuous
learning, authors in [18], [19] investigated delivering a hybrid
service function chain (HSFC). When the client identifies
HSFC, authors in [18] proposed an optimal hybrid SFC
embedding (Opt-HSFCE) algorithm, which optimizes propa-
gation delay from the constructed SFP. When the HSFC is
not given a priori, to optimize propagation delay, authors in
[19] proposed a 2-approximation algorithm by applying graph-
theory based techniques, called Eulerian circuit-based hybrid
SFP optimization (EC-HSFP). Under latency limitation, the
work in [21] proposed a heuristic algorithm to jointly optimize
the resource utilization of both physical nodes and links. In
[28], the authors proposed an architecture to reduce the latency
of NFV systems with 5G techniques. The authors in [30]
proposed a mixed integer linear program (MILP) and three
heuristics to optimize the resource utilization for accommodat-
ing SFCs. In [33], the authors proposed a heuristic approach
to deploy a given SFC under latency and mobility constraints.

To reduce SFs’ processing delay, the authors in [13] pro-
posed the technique of network function parallelism (NFP),
which enables simultaneously executing multiple parallelable
SFs. Based on that, works in [39]–[46] investigated how
to apply NFP while considering dependencies among the
required SFs. Here, dependencies represent executing orders
of the required SFs. In [44], the authors proposed a heuris-
tic algorithm, called parallelism-aware residual capacity first
placement (PARC), to maximize the request acceptance while
satisfying a specific latency constraint. In [45], the authors
proposed a heuristic approach, called partial parallel chaining
(PPC), to accommodate a P-NSR, where SFs are mutually
parallelizable. That is, if SF1 is parallelizable with SF2 and
SF3, then SF2 can co-execute with SF3 as well. In [46], the
authors proposed a scheme, called delay-balanced parallelism,
to balance the overhead and the processing delay of running
the required SFs. However, the above works hardly take the
parallel relationship constraints into account. Notably, the
parallel relationship constraint identifies whether two SFs
can work in parallel or not, and it is different from the
dependency constraints. For example, firewall (FW) and DPI
can be executed in either sequential order (i.e., FW to DPI
or DPI to FW), but they cannot work in parallel as they
both modify packet contents. As the flow monitor (FM) does
not modify the traffic, FM can be parallelly executed with
DPI or FW. That is, even though SF1 is parallelizable with
SF2 and SF3, SF2 and SF3 may not be able to co-execute.
The parallel relationship constraint is further illustrated in the
subsequent Section. Meanwhile, the SFC is given a priori
in the above works, so the SFC composition process is not
taken into consideration. Compared to the above works, this
work takes into account the parallel relationship constraints
and study how to jointly compose and embed a parallelism-
aware SFC (P-SFC) in diverse network scenarios such that the
end-to-end service latency (including the processing delay and
the propagation delay) is minimized.

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 3

SF1

SF2 SF3

SF5SF4

S DSF1 SF2 SF3 SF5SF4

S

SF1

SF2

SF4

SF3 SF5 D

S A CB D

s d

SF1

SF2

SF4

SF3 SF5

E

(a) An example of PG.

SF1

SF2 SF3

SF5SF4

S DSF1 SF2 SF3 SF5SF4

S

SF1

SF2

SF4

SF3 SF5 D

S
SF1 SF2

SF4 SF3
SF5 D

(b) Composed P-SFC 1.

SF1

SF2 SF3

SF5SF4

S DSF1 SF2 SF3 SF5SF4 S

SF1

SF2

SF4

SF3 SF5 D

S A CB

s

SF1

SF2

SF4

SF3 SF5

E

(c) Composed P-SFC 2.

SF1

SF2 SF3

SF5SF4

S DSF1 SF2 SF3 SF5SF4

S

SF1

SF2

SF4

SF3 SF5 D

S A CB D

S D
SF1

SF2

SF4

SF3 SF5

E

(d) An example of P-SFC embedding.

Fig. 1: Parallel graph (PG), different P-SFCs and P-SFC embedding process. S and D represent the source and destination.

III. PARALLELISMS IN NETWORK FUNCTION
VIRTUALIZATION

A. Network Function Parallelism (NFP)

Different network functions will perform diverse operations
on client’s data packets. These operations include writing,
reading, dropping, and so on [13]. When two operations need
to simultaneously change the client’s packet content (e.g.,
dropping and dropping, writing and dropping), the relationship
between these two operations is referred to as conflicting.
When operations of multiple SFs are non-conflicting, network
function parallelism (NFP) is introduced to allow these SFs
running in parallel and simultaneously process the packets for
the same client [13]. Parallelizable SFs are those with non-
conflicting operations.

B. Parallel Graph (PG)

We use parallel graph (PG) to describe parallel relationship
constraints among the required SFs. PG is defined as an
undirected graph PG = (V,E), where V represents the set
of SFs, and E is the set of parallel relationship constraints
among the SFs. Two SFs are parallelizable if and only if they
are directly connected in the PG; otherwise, they are non-
parallelizable. For example, in the PG of Fig. 1a, SF1 and SF2
can be executed in parallel, while SF5 is non-parallelizable
with all other four SFs. The triangle in Fig. 1a (including SF1,
SF2, and SF4) is a complete graph, and these three SFs can
work in parallel. For example, SF1, SF2, SF3, SF4, and SF5
can be the functionalities of load balancing (LB), flow monitor
(FM), gaming core (GC), network address translation (NAT),
and DPI, respectively [13]. Since DPI needs to perform the
operations of reading, writing, and dropping on diverse fields
in packets, it cannot be executed in parallel with any other SFs.
As FM only performs the operation of reading, it can parallelly
execute with LB, GC, and NAT. Even though GC and LB
both perform the operations of reading and writing, the packet
fields that are executed by these two operations are different.
Thus, GC and LB can co-execute with FW as the triangle (i.e.,
SF1, SF2, and SF4) shows. NAT needs to perform writing
operations on multiple packet fields that are overlapped with
GC and LB, so it can only be parallelly executed with FM.

C. Parallelism-based Service Function Chain (P-SFC)

A service function chain (SFC) represents the sequential
execution order of the required SFs. When applying NFP to
SFCE, we define the parallelism-based SFC (P-SFC) to specify
both consecutive execution order and parallelisms among the
required SFs. A P-SFC is composed of a set of consecutively-
ordered Parallel Blocks, each of which consists of either a
set of parallelizable SFs or one SF. Figs. 1b and 1c show

two possible P-SFCs that are composed from the PG in Fig.
1a, where a blue dashed-line rectangle represents a parallel
block. Specifically, the P-SFC in Fig. 1b contains three parallel
blocks, where the first parallel block includes SF1, SF2, and
SF4; while the second and third parallel blocks include SF3
and SF5, respectively. The P-SFC in Fig. 1c includes five
parallel blocks, each of which contains one SF, i.e., five SFs
will be sequentially executed in Fig. 1c. Note that the SFs
assigned to the same parallel block must be parallelizable SFs,
i.e., the PG sub-graph formed by the SFs in the same parallel
block must be a complete graph. For example, in Fig. 1a, the
sub-graph of SF1, SF2, and SF4 is a complete graph.

Lemma 1. The sub-graph of SFs that can work in the same
parallel block must be a complete graph in PG.

D. Processing Delay and Propagation Delay

When parallelly executing multiple SFs, it is necessary to
merge the results from these SFs to guarantee the correctness
and uniqueness of the output [13]. It is worth noting that the
SFs in the same parallel block will be embedded onto the
same physical node in this work. Fig. 1d shows an example
of embedding the P-SFC in Fig. 1b onto a PN, where the
red-dotted arrow shows the embedding relationship between
the parallel block and the physical node. To facilitate the
description, the necessary notations are summarized in Table I.
We use ξi to represent the ith parallel block in the P-SFC. In
Fig. 1d, ξ1={SF1, SF2, SF4} is embedded onto the physical
node A, ξ2={SF3} is embedded onto physical node B, and
ξ3={SF5} is embedded onto physical node C. We use Lξi to
represent the processing delay of ξi, which is calculated from
Eq. (1), where Lv is the processing delay of SF v.

Lξi = maxv∈ξi Lv (1)

The processing delay of a P-SFC (LPC) is the sum of its
parallel blocks’ processing delay. We use B to represent the
set of parallel blocks including source and destination in a
P-SFC, and overall processing delay is given by Eq. (2).

LPC = Σξi∈B Lξi (2)

When ξi and ξj are embedded onto physical nodes ni and nj ,
there will be a physical forwarding path Pni,nj

composed of a
series of physical links from node ni to node nj . For example,
in Fig. 1d, the forwarding path PA,B includes A → E → B
carrying the traffic from parallel block ξ1 to ξ2. Accordingly,
we define L

P
ξi,ξj
ni,nj

to represent the propagation delay from

physical node ni that hosts ξi to physical node nj that hosts ξj .
We use LPD to represent propagation delay of the forwarding

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 4

path (i.e., the SFP in the physical network) for the P-SFC,
which can be calculated by Eq. (3).

LPD = Σξi∈B L
P

ξi,ξi+1
ni,nj

(3)

The overall processing delay and propagation delay of Fig. 1d
are Lξ1 +Lξ2 +Lξ3 and LPs,ξ1

S,A

+L
P

ξ1,ξ2
A,B

+L
P

ξ2,ξ3
B,C

+L
P

ξ3,d

C,D

,
respectively. The overall end-to-end service latency in Fig. 1d
is the sum of LPC and LPD.

IV. PARALLELISM-AWARE SERVICE FUNCTION CHAINING
AND EMBEDDING (PSFCE)

A. Physical Network Model

The physical network (PN) is an undirected graph PN =
(N,L), where N represents the set of physical nodes, and
each node can represent a datacenter, edge server, or point of
presence (PoP), and L is the set of physical links that connect
the physical nodes in the PN. Each physical node n ∈ N has
a certain amount of computing resources Cn and can host any
type of SF. For a link lm,n ∈ L (m,n ∈ N), it has a specific
amount of available bandwidth bwlm,n

and has a propagation
delay Llm,n

. A physical forwarding path Pm,n is composed of
a series of physical links from physical node m to n. We use
LPm,n and BWPm,n to represent the propagation delay and
the bandwidth of Pm,n, respectively.

B. Parallelizable NFV Service Requests

The parallelizable NFV service request (P-NSR) is defined
as a 4-tuple P-NSR =< s, d, PG,BW >, where s and d are
the service source and destination; PG = (V,E) represents
the parallel graph; and BW is the bandwidth demand. For
each SF v ∈ V , it requires a specific network function, a
certain amount of computing demand Cv , and has a maximum
processing delay Lv .

C. Problem Formulation

Given a P-NSR, PSFCE is defined as: how to compose a
P-SFC for a P-NSR and embed it onto a given PN such that
(i) the end-to-end service latency (i.e., the sum of processing
delay and propagation delay) of the constructed SFP is mini-
mized; and (ii) the following constraints are satisfied. Table I
lists the notations used in the problem formulation.

The objective function of the proposed PSFCE problem is
shown as Eq. (4), which minimizes the overall service latency.

min
∑
ξi∈B

Lξi +
∑
ξi∈B

∑
ξj∈B

∑
ni∈N

∑
nj∈N

L
P

ξi,ξj
ni,nj

(4)

SF node embedding constraint: Eq. (5) shows whether an
SF node v is assigned to the ith parallel block or not, while
Eq. (6) checks whether the ith parallel block is mapped onto
physical node m or not. Eq. (7) ensures that u and v can work
in parallel if and only if there is an edge between u and v in
the given PG. If ξi is embedded onto the physical node m,
Eq. (8) requires that m must have enough computing resources
to host it. Eq. (9) and Eq. (10) guarantee that each SF node v
will be assigned to one parallel block, and each parallel block

TABLE I: Notation Table for Problem Formulation.

Notation Definition
B Set of parallel blocks in the constructed P-SFC.

ξi, ξj Parallel block ξi, ξj ∈ B.
Lξi Processing delay of ξi.
LPC Overall processing delay.
LPD Overall propagation delay.
N Set of physical nodes.
V Set of required SFs.

m,n Physical node m,n ∈ N .
u, v Service functions (SFs) u, v ∈ V .

Cn/Cv Computing resources(demand) of n(v).
lu,v Edge between u and v in the PG.
lm,n Physical link connecting m,n in PN.
Pm,n Physical path from m to n.
BW Bandwidth demand.
γ
ξi
v =1 v is assigned to the ith Parallel block; 0 otherwise.

M
ξi
ni

=1 ξi is mapped onto n; 0 otherwise.

P
ξi,ξj
ni,nj

=1 Pni,nj supports the traffic from ξi to ξj ; 0 otherwise.

BWPm,n Bandwidth of Pm,n.
L
P
ξi,ξj
ni,nj

Propagation delay from ξi to ξj along Pni,nj .

must be embedded onto one physical node. Eq. (11) calculates
the processing delay of a parallel block.

γξi
v =

{
1, v is assigned to the ith parallel block
0, otherwise

(5)

Mξi
ni

=

{
1, ξi is embedded onto physical node ni

0, otherwise
(6)

γξi
v + γξi

u ≤ 1,∀lu,v ̸∈ E,∀ξi ∈ B (7)

Mξi
ni

∗
∑
v∈V

γξi
v ∗ Cv ≤ Cni

,∀ξi ∈ B,∀ni ∈ N (8)

∑
ξi∈B

γξi
v = 1,∀v ∈ V (9)

∑
ni∈N

Mξi
ni

= 1,∀ξi ∈ B (10)

Lξi = maxv∈V γξi
v ∗ Lv (11)

SFP routing constraint: We use P
ξi,ξj
ni,nj to denote whether

Pni,nj
is the forwarding path from ξi to ξj as Eq. (12). Eq. (13)

and Eq. (14) ensure that, if Pni,nj is employed to transmit the
traffic from ξi to ξj , then ξi and ξj must be embedded onto
ni and nj , and Pni,nj

must have enough bandwidth. Eq. (15)
and Eq. (16) require that (i) there must be a physical path
starting from each parallel block (including source), and (ii)
there must be a physical path ending at each parallel block
(including destination). Eq. (17) computes the propagation
delay of P ξi,ξj

ni,nj .

Pξi,ξj
ni,nj

=


1, path from ni to nj employed

to transmit traffic from ξi to ξj

0, otherwise
(12)

Pξi,ξj
ni,nj

≤
Mξi

ni
+M

ξj
nj

2
,∀ni, nj ∈ N, ∀ξi, ξj ∈ B (13)

Pξi,ξj
ni,nj

∗BW ≤ BWPni,nj
,∀ni, nj ∈ NP ,∀ξi, ξj ∈ B (14)

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 5

∑
ξj∈B,ξj ̸=ξi

∑
ni∈N

∑
nj∈N

Pξi,ξj
ni,nj

= 1,∀ξi ∈ {B− {d}} (15)

∑
ξi∈B,ξi ̸=ξj

∑
ni∈N

∑
nj∈N

Pξi,ξj
ni,nj

= 1,∀ξj ∈ {B− {s}} (16)

L
P

ξi,ξj
ni,nj

= P ξi,ξj
ni,nj

∗ LPni,nj
, (17)

∀ξi, ξj ∈ B, ξi ̸= ξj ,∀ni, nj ∈ N

V. NP-HARDNESS OF PSFCE

In this section, we analyze the NP-hardness of the proposed
PSFCE problem in various network scenarios: (i) every physi-
cal node has enough computing resources to host the required
SFs, and the PG is a complete graph, (ii) every physical node
has enough computing resources to host the required SFs, and
the PG is a non-complete graph, and (iii) every physical node
has limited computing resources, and the required SFs cannot
be hosted by one physical node.

A. Enough Computing Resources and Complete PG

With enough computing resources, any physical node can
host all required SFs in a client’s request. In practice, the
length of an SFC is generally no more than 8 [47]. Therefore,
with enough computing resources, it is possible that any
physical node can host the SFs for a moderate SFC. In this
case, SFP propagation delay can be optimized by embedding
all required SFs onto the physical nodes along one bandwidth-
aware shortest path from the service source to the destination.
Since PG is a complete graph, all required SFs can work
in parallel, and the optimally-constructed P-SFC only has
one parallel block, whose processing delay is the highest
processing delay among all SFs. As a result, the PSFCE
problem in this scenario can be optimized by embedding and
parallelly executing all SFs at one physical node along the
bandwidth-aware shortest path connecting the service source to
the destination. Fig. 2a shows an example of accommodating
a P-NSR to a PN, where all nodes have enough computing
resources while PG is a complete graph. In this case, all
SFs can be executed in one parallel block, and this block
is embedded onto one physical node along the bandwidth-
aware shortest path, i.e., S → E → D. Similarly, when one
physical node with enough computing resources is located
along the bandwidth-aware shortest path as the physical node
G in Fig. 2b, this shortest path is an optimal solution for
PSFCE. Since the running time complexity of the bandwidth-
aware shortest path algorithm is polynomial [48], the following
theorem holds.

Theorem 1. When each physical node has enough computing
resources and PG is a complete graph, the PSFCE problem
can be optimized within polynomial time.

Lemma 2. When one physical node along the bandwidth-
aware shortest path has enough computing resources, the
PSFCE problem can be optimized within polynomial time.

S A CB D
[] [] []

E
[]

SF1

SFn

..

S A CB D
[] [] []

F
[]

SF1

SFn

..

E
[]

G
[]

(a) Optimal PSFCE solution in a
PN with enough computing re-
sources.

S A CB D
[] [] []

E
[]

SF1

SFn

..

S A CB D
[] [] []

F
[]

SF1

SFn
..

E
[]

G
[]

(b) Optimal PSFCE solution when
the bandwidth-aware shortest path
includes a node with enough com-
puting resources.

Fig. 2: Optimal PSFCE solutions with enough computing
resource. ∞ is used to present enough computing resources.

B. Enough Computing Resources and Non-Complete PG

When each physical node has enough computing resources,
the SFP propagation delay can be optimized. However, since
PG is a non-complete graph, optimizing SFs’ processing delay
and PSFCE will be NP-hard, as shown in Theorem 2.

Theorem 2. When PG is a non-complete graph, the PSFCE
problem is NP-hard.

Proof. If each SF has the same processing delay, optimizing
the P-SFC processing delay is equivalent to constructing the
minimum number of parallel blocks in the P-SFC. Then, we
can create the complement graph (PGC) of PG, each edge
in which represents the non-parallel relationship. When we
label the SFs that are assigned to the same parallel block with
the same color, minimizing the number of parallel blocks in
the constructed P-SFC is equivalent to coloring the PGC with
the minimum number of colors, which is a well-known NP-
hard problem [49]. Therefore, in this scenario, optimizing SFs’
processing delay is NP-hard, and PSFCE is NP-hard.

C. Limited Computing Resource

When computing resources at each physical node are lim-
ited, the physical nodes along the bandwidth-aware shortest
path may not have enough computing resources to host all
required SFs. In this case, propagation delay is determined by
the complex routing process, and SFs’ processing delay can
not be optimized no matter whether PG is a complete graph or
not. As a result, we need to jointly optimize propagation and
processing delays, which is NP-hard, as shown in Theorem 3.

Theorem 3. When each physical node has limited computing
resources, PSFCE is NP-hard.

Proof. We assume that every SF requests the same amount of
computing resources, and the physical network only contains
|N | = |V | physical nodes, each of which has only enough
computing resources to host one SF. As a result, SFs’ pro-
cessing delay is fixed as the sum of processing delay from all
SFs, and optimizing SFP propagation delay is equivalent to
finding the shortest path spanning all physical nodes in PN,
which is the traveling salesman path problem (TSPP) [50].
As TSPP is a well-known NP-hard problem, PSFCE is also
NP-hard in this scenario.

From the above discussion, we can see that there are
three important scenarios to optimize PSFCE. (i) When each

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 6

physical node has enough computing resources, and PG is a
complete graph, PSFCE can be optimized by embedding and
parallelly executing all SFs at one physical node along the
bandwidth-aware shortest path. (ii) When each physical node
has enough computing resources and PG is a non-complete
graph, PSFCE becomes NP-hard. In this case, SFP propagation
delay is solvable by applying the bandwidth-aware shortest
path algorithm, and we propose an efficient maximum parallel
block gain (MPBG) first optimization algorithm in Section VI
to minimize SFs’ processing delay. (iii) When computing
resources at each physical node are limited, PSFCE remains
NP-hard regardless of whether PG is a complete graph or not.
To jointly optimize SFs’ processing delay and SFP propagation
delay, we propose and analyze a novel parallelism-aware SFs
deployment (PSFD) algorithm in Section VII.

VI. PSFCE WITH ENOUGH COMPUTING RESOURCES

When each physical node has enough computing resources
to host the required SFs, the SFP propagation delay can
be minimized by embedding all required SFs at physical
nodes along the bandwidth-aware shortest path from the
service source to the destination. However, minimizing the
SFs’ processing delay is challenging when PG is a non-
complete graph, as proved by Theorem 2. To minimize SFs’
processing delay, one needs to properly assign the required SFs
to different parallel blocks and satisfy all parallel relationship
constraints. Here, we propose parallel block gain (PBG) and
maximum parallelism block gain (MPBG) first optimization
algorithm to efficiently construct P-SFC while minimizing
SFs’ processing delay.

A. Parallel Block Gain (PBG)
A parallel block ξi is composed of a set of SFs that can

work in parallel. The processing delay of a parallel block is
denoted by Lξi , which depends on the in-block SF that has the
highest processing delay. According to Eqs. (1) and (2), only
the SF with the highest processing delay will determine the
overall P-SFC processing delay for that parallel block, while
the processing delay of other SFs are not counted, thus being
saved. For a set of SFs, the maximum processing delay is the
processing delay sum of these SFs (i.e., serially running these
SFs). That is, minimizing the processing delay for a set of
SFs is equivalent to maximizing the processing delay being
saved by the SF parallelism process. Accordingly, we define
the amount of processing delay being saved in a parallel block
ξi as parallel block gain (PBGξi) in Eq. (18).

PBGξi =
∑
v∈ξi

Lv − Lξi (18)

The parallel block gain for a P-SFC (PBGP-SFC) is the sum
of PBGξi from all parallel blocks as Eq. (19).

PBGP-SFC = Σξi∈B PBGξi (19)

The P-SFC processing delay LPC can be calculated by Eq.
(20), where LSFC is the processing delay of executing all re-
quired SFs without any parallelisms (i.e., the traditional SFC).

LPC = LSFC − PBGP-SFC (20)

B. Maximum Parallel Block Gain (MPBG) first optimization

Maximizing PBGξi for a parallel block ξi will maximize
parallelism(s) in this block, leading more SFs to operate in
parallel, which can in turn increase the parallel block gain for
P-SFC as shown in Eq. (19). As LSFC is fixed for a given
P-NSR, Eq. (20) shows that minimizing the overall P-SFC
processing delay is equivalent to maximizing PBG of P-SFC
(i.e., PBGP-SFC). To optimize P-SFC processing delay, we
need to properly construct parallel blocks ξ ∈ B such that
the PBG of the constructed P-SFC in Eq. (19) is maximized.

100 s

SF1

SF2 SF3

SF4

100 s

30 s 40 s

100 s

SF1

SF2 SF3

SF4

100 s

30 s 40 s

(a) A given parallel graph (PG).
100 s

SF1

SF2 SF3

SF4

100 s

30 s 40 s

100 s

SF1

SF2 SF3

SF4

100 s

30 s 40 s

(b) ξ1={SF1,SF2,SF3} ξ2={SF4}.

100 s

SF1

SF2 SF3

SF4

100 s

30 s 40 s

100 s

SF1

SF2 SF3

SF4

100 s

30 s 40 s

(c) ξ1={SF1,SF4} ξ2={SF2,SF3}.

Fig. 3: Options to construct parallel blocks.

The PG in Fig. 3a identifies four SFs and their parallel
relationship constraints, while the number beside each SF node
represents its processing delay. There are multiple options to
construct parallel blocks. Fig. 3b first selects the largest com-
plete sub-graph in PG to construct ξ1 = {SF1, SF2, SF3}
and then the remaining SF4 will be alone in ξ2. As a result,
the PBG for ξ1 and ξ2 is 70 µs and 0, respectively. In total,
PBGP-SFC in Fig. 3b is 70 µs. Fig. 3c identifies another way
to construct parallel blocks via maximizing the PBG value of
each parallel block. By doing so, parallel block ξ1 will include
SF1 and SF4, which has PBG of 100 µs, and parallel block
ξ2 includes SF2 and SF3, which has PBG of 30 µs. Overall,
PBGP-SFC of the scheme in Fig. 3c is 130 µs.

Algorithm 1 MPBG algorithm

1: Input: P -NSR;
2: Output: P-SFC;
3: Initialize index i = 1;
4: while V is not empty do
5: Find set of SFs (V sub) that maximizes Eq. (18);
6: Construct ξi by assigning the SFs in V sub to ξi;
7: Set V = V − V sub, and i = i+ 1;
8: end while
9: Set ξ0 = s and ξlast = d;

10: Formulate P-SFC by concatenating all parallel blocks in
their index orders (i.e., B = {ξ0,ξ1,...,ξlast});
return P-SFC;

In fact, optimizing PBGP-SFC in Eq. (19) is NP-hard, which
can be proved via reductions from the maximum clique prob-

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 7

lem (MCP) or weighted maximum clique problem (WMCP)
[51], [52]. Thanks to the importance of MCP and WMCP
problems in the field of data science, many existing works
have proposed fast and exact optimization techniques [53],
[54]. Based on the above examples in Fig. 3, to maximize
PBGP-SFC and in turn reduce the processing delay of P-SFC,
we propose an efficient heuristic algorithm, namely, maxi-
mum parallel block gain (MPBG) first optimization algorithm,
which greedily constructs the parallel blocks with large PBG
values, as shown in Alg. 1. In Lines 4-8, when there exist SFs
that are not yet assigned to any parallel block, MPBG will
repeat: (i) find a set of SFs (V sub) that maximize Eq. (18)
by recursively calculating the maximum PBG value of each
parallel block that the SFs can construct based on PG; (ii)
construct ith parallel block (ξi) by using the SFs in V sub; and
(iii) remove set of SFs in V sub from V . At last, MPBG sets
ξ0 = s, ξlast = d, and formulates P-SFC by concatenating all
constructed parallel blocks.

C. Bound Analysis of MPBG Algorithm

An essential property of ξi constructed by applying MPBG
in the ith iteration is described in Lemma 3.
Lemma 3. Each parallel block (ξi) constructed by MPBG
includes the SFs whose sub-graph in PG is a maximal clique.

Proof. We prove this lemma by contradictions. We assume
that there exists a parallel block (ξ′i) that is the super set of
ξi. We define the SF that is included in ξ′i but not in ξi as v′.
If Lv′ > Lξi , then Eq. (21) holds, which contradicts the fact
that PBGξi is the maximum value found.∑

v∈ξ′i

Lv − Lξ′i
=

∑
u∈ξi

Lu >
∑
v∈ξi

Lv − Lξi (21)

If Lv′ ≤ Lξi , then Lξ′i
= Lξi , and Eq. (22) holds, which

contradicts that PBGξPBG
i

is the maximum value found.∑
v∈ξ′i

Lv =
∑

v∈{ξi∪{v′}}

Lv >
∑
u∈ξi

Lu (22)

As a result, there does not exist a parallel block (ξ′i) that is
the superset of the parallel block constructed by MPBG. And
the parallel block ξi constructed by MPBG includes the SFs
that construct a maximal clique in PG.

With Lemma 3, we then prove that MPBG can achieve
optimal performance in the following scenarios.

Theorem 4. With enough computing resources, when there
exist only two maximal cliques in PG, MPBG achieves optimal
performance.

Proof. As proved by Lemma 3, the first parallel block ξ1
constructed by MPBG is not the subset of any other possible
parallel block. In other words, the set of SFs in ξ1 is, in
fact, the set of vertices that construct one of the maximal
cliques in PG. Similarly, the parallel block constructed in the
next iteration will be composed of the SFs in the remaining
maximal clique of the PG. As only two maximal cliques exist
in the PG, MPBG optimizes the PBG value in Eq. (19). Hence,
MPBG achieves optimal performance.

We list some examples where there exist only two different
maximal cliques in a PG. For instance, when the complement
graph of PG (PGC) is a path, complete binary (ternary) tree,
star, or complete bipartite graph, there exist only two maximal
cliques in the PG. Additionally, when PG is one of the graphs
listed in Lemma 4, the optimality of MPBG also holds.

Lemma 4. With enough computing resources, when the com-
plement graph of PG is a trivial graph, circle, wheel, or
complete multi-partite graph, the MPBG algorithm achieves
optimal performance.

VII. PSFCE WITH LIMITED COMPUTING RESOURCES

When each physical node has limited computing resources,
optimizing the PSFCE problem is different from and more
challenging than in Section VI. This is because (i) one
cannot flexibly create a parallel block as there might not
exist a physical node with enough computing resources to
host it, and (ii) the physical nodes along the bandwidth-aware
shortest path might not have enough computing resources to
accommodate the P-NSR. To demonstrate these, we use the
PG in Fig. 3a as the request example. We assume that SF1,
SF2, and SF3 require 10 Gb computing resources while SF4
needs 25 Gb computing resources. Fig. 4a is the physical
network, where the number in the square bracket represents
the available computing resources at each physical node. Due
to limited computing resources at each physical node, none of
the physical nodes can host the parallel block ξ={SF1, SF4}
that requires 10 + 25 = 35 Gb computing resources, even
though this ξ maximizes PBG in Eq. (19). Hence, one may
accommodate the PG in Fig. 3b by composing ξ1={SF1, SF2,
SF3}, ξ2={SF4} and embedding them onto physical nodes
A and C in Fig. 4b, where physical nodes C and D now
have no computing resources left. Similarly, due to the limited
computing resources at physical node E, we cannot route the
forwarding path along the shortest path S → E → D.

S A CB D
[30] [20] [25]

SF1

SF2

100 𝝁s

SF3

E
[10]

S A CB D
[0] [20] [0]

E
[10]

SF4

100 𝝁s

(a) A physical network with lim-
ited computing resources.

S A CB D
[30] [20] [25]

SF1

SF2

100 𝝁s

SF3

E
[10]

S A CB D
[0] [20] [0]

E
[10]

SF4

100 𝝁s

(b) Embedding result in limited
computing resources network.

Fig. 4: Parallel block construction and embedding processes
are constrained by limited computing resources.

The above example shows that the limited computing re-
sources impact how to construct parallel blocks and how to
deploy (i.e., embed and route) parallel blocks in the physical
network. Here, to optimize PSFCE, we have to jointly take
the parallel block construction, physical node embedding,
and routing process into account. As optimizing processing
delay and propagation delay are interrelated, it is essential to
identify physical node candidates that can facilitate the joint
optimization of both delays.

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 8

A. Parallelism-aware Betweenness Centrality (PBC)

The parallel block gain (PBG) in Section VI is defined
as the processing delay saved from the parallel blocks when
computing resources are enough at each physical node. Now,
there might not exist a physical node n with enough computing
resources to host the parallel block constructed from the max-
imum PBG strategy. Accordingly, to evaluate the processing
delay impact of a physical node, we define PBG′

n in Eq. (23),
where V sub is a set of parallelizable SFs that can be jointly
hosted at n and LV sub is processing delay of the parallel block
constructed by the SFs in V sub. This PBG′

n measures how
much a physical node n can facilitate saving processing delay
by considering (i) the number of parallelizable SFs that n
can host and (ii) the processing delay of the parallel block
constructed by the SFs that are co-hosted at n.

PBG′
n =

|V sub|
LV sub

(23)

Σv∈V subCv ≤ Cn, lu,v ∈ E,∀u, v ∈ V sub

Similarly, to optimize SFP propagation delay, we need the
scheme to measure how much propagation delay a physical
node n might introduce when it is selected to host a parallel
block. Here, we define potential propagation delay (LPPDn

) to
evaluate the propagation delay when selecting n to construct
SFP as Eq. (24), where ∆ is the set of physical nodes that
have been added into SFP. Initially, ∆ = {s, d}.

LPPDn
= minni,nj∈∆ LPn,ni

+ LPn,nj
, ni ̸= nj (24)

Traditionally, to optimize traffic latency, betweenness cen-
trality (BC) measures the node centrality based on the num-
ber of shortest paths passing the physical node. Likewise,
we propose parallelism-based latency betweenness centrality
(PBC) in Eq. (25) to measure the node centrality of how
much a physical node can facilitate deploying the parallel
blocks with low processing and propagation delays. Note that
α and β are two coefficient values to balance the optimization
priority between processing delay and propagation delay. A
physical node with a high PBC value means it enables great
parallelisms and yields a low potential latency (i.e., the sum
of potential SFs’ processing delay and potential propagation
delay).

PBCn = maxV sub⊂V

|V sub|
α ∗ LV sub + β ∗ LPPDn

(25)

B. Parallelism-aware SFs Deployment (PSFD) Algorithm

Based on the technique of parallelism-based latency be-
tweenness centrality, now we propose the parallelism-aware
SFs deployment (PSFD) algorithm to efficiently accommodate
a given P-NSR on the physical network while jointly taking
the parallel block construction, physical node embedding, and
routing process into account.

To begin, PSFD initializes a node set ∆ with {s, d}.
Then, PSFD repeats the following operations until all SFs
are satisfied: (i) update PBC value of each physical node; (ii)

Algorithm 2 PSFD Algorithm

1: Input: P -NSR, PN ;
2: Output: SFP, P-SFC;
3: Initialize ∆ = {s,d};
4: while V ̸= ∅ do
5: Update PBC value of each physical node based on

Eq. (25), if a node n is already in ∆, LPPDn
is 0;

6: Select physical node δ with highest PBC value, and
add δ to ∆;

7: Create a parallel block including the set of SFs (V sub)
that maximize the PBC value of δ, and embed the SFs in
the constructed parallel block onto δ;

8: Remove the set of SFs in V sub from V ;
9: end while

10: Initialize S = ∅, set the SFP endpoint node ne as s, add
ne to SFP;

11: while ∆ ̸= ∅ do
12: Find node x in ∆ with the smallest LPx,ne

;
13: Add x to S, set ne = x, and ∆ = ∆− x;
14: end while
15: Add d to S, construct the SFP by connecting each pair of

adjacent nodes in S, and form the corresponding P-SFC;
return SFP, P-SFC;

select the node δ whose PBC value is highest and add it to ∆;
(iii) create a parallel block that includes the set of SFs (V sub)
and maximizes the PBC value at δ, and embeds it onto δ; and
(iv) remove the set of embedded SFs from V . Note that, to
further utilize the available computing resources remaining in
the selected physical nodes, if a physical node n is already
in ∆, the LPPD value of n is counted as 0. Next, the PSFD
algorithm repeats the following operations until all the parallel
blocks are embedded: (i) find physical node x in ∆ which has
the smallest propagation delay to the SFP endpoint node ne;
and (ii) add x to S, set ne = x, and remove x from ∆. At
last, the PSFD algorithm constructs the SFP by connecting
each pair of adjacent physical nodes in S and formulates the
corresponding P-SFC.

C. Bound Analysis of PSFD Algorithm

Next, we prove that the PSFD algorithm is logarithm-
approximate. Table III lists the notations used in the proof.

TABLE II: Notation Table for Approximation Proof.

Notation Definition

δi Physical node selected in ith iteration.

V sub
δi

Set of SFs instantiated at physical node δi.

V left
i Set of unsatisfied SFs in ith iteration.

LPPDδi
Propagation delay in ith iteration.

LV sub
δi

Processing delay in ith iteration.

SFPOPT
i Optimal SFP in ith iteration.

|ζi| Number of physical nodes in SFPOPT
i .

|V | Number of SFs required by P-NSR.
k Minimum number of SFs satisfied among any iteration.
|T | Total number of iterations to satisfy the P-NSR.

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 9

Theorem 5. When α and β in Eq. (25) are both 1, the PSFD
algorithm is logarithm-approximate.

Proof. Eq. (26) shows the relationships between the number
of satisfied SFs and the unsatisfied SFs in adjacent iterations
(i.e., iterations i and i+ 1).

|V left
i | = |V sub

δi |+ |V left
i+1 | (26)

As PSFD picks the physical node with the highest PBC value,
PBCδi is greater than the average PBC value of the physical
nodes in the optimal SFP. Then, Eq. (27) holds.

|V sub
δi

|
LPPDδi

+ LV sub
δi

≥

∑
m∈SFPOPT

i

|V sub
m |

LPPDm+L
V sub
m

|ζi|
(27)

For a physical node m in SFPOPT
i , to maximize the PBC

value, the sum of LPPDm
and LV sub

m
is not greater than the

latency of the SFPOPT
i as shown in Eq. (28).

LPPDm + LV sub
m

≤ LSFPOPT
i

,∀m ∈ SFPOPT
i (28)

Since different physical nodes can provide the same SF
instance(s) to satisfy the P-NSR, Eq. (29) holds.∑

m∈SFPOPT
i

|V sub
m | ≥ |V left

i | (29)

When combining Eqs. (27) - (29), we have Eq. (30).

LPPDδi
+ LV sub

δi

≤ |V sub
δi | ∗

LSFPOPT
i

∗ |ζi|

|V left
i | ∗ |ζi|

(30)

According to Eq. (26), Eq. (31) holds.

|V sub
δi

|
|V left

i |
≤ 1

|V left
i |

+
1

|V left
i | − 1

+ ...+
1

|V left
i+1 |

≤
|V left

i |∑
τ=|V left

i+1 |

1

τ

(31)
When summing up all the iterations, we have Eq. (32), which
combines Eqs. (30) and (31).

|T |∑
i=1

LPPDδi
+ LV sub

δi

≤
|V left

|T | |∑
τ=|V left

1 |

1

τ
∗ LSFPOPT

i
(32)

According to the properties of the harmonic series, Eq. (33)
hold.

|T |∑
i=1

1

τ
=

1

|V |
+

1

|V | − |V sub
δ1

|
+ ...+

1

|V left
δ|T |

|

≤ 1

|V |
+

1

|V | − k
+

1

|V | − 2 ∗ k
+ ...+1 ≤ ln(V)

k
+1 (33)

Since the SFPOPT
1 includes all the required SFs, for any

SFPOPT
i (i > 1), Eq. (34) and Eq. (35) hold.

LSFPOPT
1

> LSFPOPT
i

, ∀i > 1 (34)

|T |∑
i=1

LPPDδi
+ LV sub

δi

≤ (
ln(|V |)

k
+ 1) ∗ LSFPOPT

1
(35)

Based on Eq. (24), the propagation delay of the created SFP
is less than the sum of LPPDδi

. Thus, Eq. (36) holds.

LSFPPSFD
<

|T |∑
i=1

LPPDδi
+LV sub

δi

≤ (
ln(|V |)

k
+1) ∗LSFPOPT

1

(36)
Therefore, the proposed PSFD algorithm achieves a logarithm-
approximation performance.

VIII. PERFORMANCE EVALUATION

A. Simulation Settings

To evaluate the performances of the proposed schemes, we
conduct our experiments in three network scenarios: (i) 24-
node-43-link USNET [55] (as Fig. 5), (ii) edge-cloud system
[56], and (iii) random network. If not otherwise specified,
the parameters are generated in terms of the state-of-the-art
simulation settings as follows [13], [15], [19], [57], [58]. Each
physical node’s amount of computing resources are randomly
set in a discrete-uniform range [20, 100] gigabit (Gb). Each
physical link has a bandwidth in a discrete-uniform range [5,
10] gigabit per second (Gbps). The propagation delay of a
physical link is randomly set in a uniform range [10, 50]
microseconds (µs). In P-NSR, the number of SF nodes is
randomly set in a discrete-uniform range [5, 20], edge density
of PG is randomly set in a uniform range [0, 1], and bandwidth
demand is random in a discrete-uniform range [1, 5] Gbps.
Each SF node requires computing resources in a discrete-
uniform range [10, 25] Gb and needs the maximum processing
delay in a uniform range [10, 30] µs. The service source and
destination of the P-NSR are randomly selected from the PN.
The coefficient values α and β in PBC calculations are both
set to 1. It is worth noting that the edge density of a PG is
estimated by the ratio between the number of edges existing
in this PG and the maximum number of edges that this PG can
have (i.e., the number of edges in the complete graph for this
PG). We evaluate the performances of the proposed algorithms
in terms of (i) propagation delay, (ii) processing delay, (iii)
end-to-end latency (i.e., the sum of overall processing delay
and propagation delay), (iv) number of accepted requests, and
(v) resource utilization ratio.

1

2 6

3 7

4

5 8

9

10

11

12

13

14

15

16

17

18

21

19

20

22

23

24

Fig. 5: Topology of 24-node-43-link USNET [55].

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 10

50
100
150
200
250
300
350
400
450
500

5 20

Pr
oc

es
si

ng
 D

el
ay

10 15
of the Required SFs

No Parallelism
MPBS
MPBG
Integer Program

(a) Processing delay vs. |V |.

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
oc

es
si

ng
 D

el
ay

Edge Density in PG

(b) Processing delay vs. edge density.

Fig. 6: Impact of SF parallelisms.

B. Performance Bound Analysis

To demonstrate the impact of SF parallelisms, we set each
physical node with enough computing resources. As a result,
propagation delay can be optimized by embedding all SFs
onto one physical node along the bandwidth-aware shortest
path. To minimize processing delay, we implement the integer
program model under the constraints in Eqs. (5) - (11) to
obtain the optimal processing delay of a P-SFC. We also
implement the maximum parallel block size (MPBS) first op-
timization algorithm, which replaces Eq. (18) as PBGξ = |ξ|
(i.e., maximizes the size of each parallel block). In Fig. 6,
we show the performances of the integer program, MPBG,
MPBS, and no parallelism (i.e., LSFC in Eq. (20)), which
are denoted by red rhombus-dashed, blue triangle-solid, grey
square-dotted, and dark circled-solid curves, respectively. In
Fig. 6a, when increasing the number of SFs, all schemes
need more processing delay to construct the P-SFC. This
is because more required SFs likely construct more parallel
blocks, thereby increasing the processing delay. As MPBG
creates the parallel block that saves the most processing delay
at each iteration, it has near-optimal performance. In Fig. 6b,
when fixing the number of required SFs as 20 and increasing
the edge density in PG, all three proposed schemes need less
processing delay, except that no-parallelism scheme always
needs the same processing delay. Note that, when edge density
is 0 (i.e., no parallelism) and 1 (i.e., all SFs can work in
parallel), integer programming, MPBG and MPBS have the
same performance. When edge density is high (i.e., more than
0.6), MPBG has a similar performance as the integer program.
High edge densities increase the connectivities of PG and
reduce the number of maximal cliques in PG. Therefore, with
a limited number of maximal cliques in PG, MPBG, achieves

near-optimal performance. As shown in Fig. 3, assigning more
parallelizable SFs in one parallel block reduces processing
delay to construct P-SFC, but may not maximize PBG of P-
SFC in Eq. (19). Thus, when the edge density is 0.4, MPBG
outperforms MPBS by as much as 58% in our examples.

0
50

100
150
200
250
300
350
400

5 20

Pr
op

ag
at

io
n

D
el

ay

10 15
of Required SF Nodes

Branch & Bound
PSFD(α=1,β=1)

(a) Propagation delay vs. |V |.

0
50

100
150
200
250
300
350
400

1 4

Pr
op

ag
at

io
n

D
el

ay

2 3
Bandwidth Demand

(b) Propagation delay vs. BW de-
mand.

Fig. 7: Impact of routing.

To show the impact of routing, each physical node is set
to host only one SF. As a result, the optimization problem of
PSFCE becomes finding the best path connecting the service
source and destination while hosting all required SFs. We
implement the branch-and-bound (B&B) method to obtain the
optimal path with the least propagation delay. Fig. 7 shows
the performances of B&B and PSFD (α=1,β=1), which are
denoted by the red and blue bars, respectively. In Fig. 7a, when
increasing the number of required SF nodes, both schemes
need more propagation delay to construct the SFP. This is
because more required SFs lead to more physical nodes in
the SFP, thereby increasing the propagation delay. Similarly,
when fixing the number of SF nodes as 15 and increasing
the bandwidth demand as shown in Fig. 7b, both the B&B
method and PSFD need more propagation delay. From Figs.
7a and 7b, we see that the PSFD algorithm achieves near-
optimal performance when the number of required SFs is small
or the bandwidth demand is high. According to Eq. (24),
when |V | = 1, PSFD can construct the optimal SFP by
applying the PBC technique. Similarly, when increasing the
bandwidth demand, the number of bandwidth-aware shortest
paths reduces. The SFP created by applying the PBC technique
is likely the same as the one created by the B&B method. Thus,
with higher bandwidth demand, the performance of PSFD is
closer to the optimal.

150

250

350

450

550

650

10 25

La
te

nc
y

15 20

Physical Network Size

PSFD (α=0,β=1)
PSFD (α=1,β=0)
PSFD (α=1,β=1)

(a) Latency vs. PN size.

250

350

450

550

650
750

25 100

La
te

nc
y

50 75
Computing Resource

(b) Latency vs. computing re-
sources.

Fig. 8: Joint impact of SF parallelism and routing process.

We conduct experiments to evaluate the joint impact of SF
parallelisms and routing by varying the physical network size
(i.e., number of physical nodes and links in the network) and
computing resources at each physical node in Fig. 8. Here,
we compare the performances of PSFD (α=1,β=0), PSFD
(α=0,β=1), and PSFD (α=1,β=1); where PSFD (α=1,β=0) fo-

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 11

cuses on the optimization of SFs’ processing delay and PSFD
(α=0,β=1) concentrates on optimizing SFP propagation delay.
In Fig. 8, performance of PSFD (α=0,β=1), PSFD (α=1,β=0),
and PSFD (α=1,β=1) are denoted by the yellow-solid, green-
dashed, and grey-dotted curves, respectively. In Fig. 8a, when
increasing the physical network size, all schemes require more
latency to construct SFP. This is because the service source is
likely far away from the destination in a larger network, which
increases SFP propagation delay. As PSFD (α=1,β=1) takes
optimization of processing delay and propagation delay into
account, the physical node selected to embed the parallel block
by PSFD (α=1,β=1) will yield the smallest sum of processing
and propagation delays. Interestingly, when comparing PSFD
(α=1,β=0) with PSFD (α=0, β=1) in Fig. 8a, we can see
that PSFD (α=1, β=0) is better in smaller PNs and PSFD
(α=0, β=1) is better in larger PNs. This indicates that the
optimization of the end-to-end service latency largely depends
on SFs’ processing delay in small networks, while end-to-end
service latency is impacted more by SFP propagation delay in
large networks. In Fig. 8b, when fixing the number of required
SFs as 15 and increasing the computing resources at each
physical node, all schemes need less latency. This is because,
with more computing resources, more parallelisms are enabled
to save processing delay, and fewer physical nodes are required
in SFP to host all SFs, which can save on propagation delay.
When investigating the joint impact of SF parallelism and
routing processes, the proposed PSFD (α=1,β=1) algorithm
outperforms PSFD (α=1,β=0) and PSFD (α=0,β=1) by an
average of 52% and 36%, respectively, in our examples.

C. Performance Evaluation in Edge-Cloud Systems

In this section, we evaluate the performances of the pro-
posed schemes in edge-cloud systems. Similar to the network
topology in [56], the cloud is directly connected to the
clients’ access network via fiber links, while edge servers
are distributed around clients. The propagation delay from a
client to the cloud is in a uniform range [50, 100] µs, and
the propagation delay between edge servers and clients is in
a uniform range [5, 15] µs. Servers in the cloud have high-
performance computing hardware and the processing delay of
running an SF is in a uniform range [5, 15] µs. The edge
servers own low-performance computing hardware and the
processing delay of running an SF is in a uniform range
[10, 30] µs. Additionally, the cloud has enough computing
resources to accommodate any P-NSR, while the edge has the
limited number of servers in a discrete-uniform range [20, 40].
The edge servers are interconnected with a 60% probability.
Notably, for each request, it is accommodated (i) in the cloud
(with enough computing resources) by MPBG and (ii) at the
edge (with limited computing resources) by PSFD.

Figs. 9 and 10 show the performances of MPBG and PSFD
regarding the impact of the SFC length and the number of
edge nodes, respectively. In Figs. 9 and 10, the dark (light)
blue and red bars represent the propagation (processing) delay
of applying MPBG and PSFD to accommodate the request,
respectively, while the blue-dashed and red-solid curves rep-
resent the number of parallel blocks created by MPBG and
PSFD, respectively.

0

50

100

150

200

250

3 5 7 9 11 13

La
te

nc
y

of Required SFs

MPBG-Propagation Delay
MPBG-Processing Delay
PSFD-Propagation Delay
PSFD-Processing Delay

(a) Latency vs. # of required SFs.

0

1

2

3

4

5

6

0

20

40

60

80

100

120

140

160

3 5 7 9 11 13

of

 P
ar

al
le

l B
lo

ck
s

Pr
oc

es
si

ng
 D

el
ay

of Required SFs

MPBG-Processing Delay
PSFD-Processing Delay
MPBG-Parallel Block
PSFD-Parallel Block

(b) LPC vs. # of required SFs.

Fig. 9: Impact of SFC length on MPBG and PSFD.

When increasing the number of required SFs, both algo-
rithms need more service latency to deliver the P-NSR, as
shown in Fig. 9a. For PSFD at the edge, both propagation
and processing delays increase with the number of required
SFs as more parallel blocks are created. This is because (i)
more parallel blocks likely lead to a higher processing delay
according to Eq. (2), and (ii) more edge servers are needed to
host parallel blocks, leading to a higher propagation delay for
connections. Interestingly, for MPBG in the cloud, the process-
ing delay increases with the number of required SFs while the
propagation delay fluctuates. This can be explained as follows.
More SFs are likely forming more parallel blocks, leading to
higher processing delay. As the source and destination nodes
are randomly located, the propagation delay fluctuates. Fig.
9b further verifies the above observations and analysis. With
enough computing resources and high-performance hardware
in the cloud, MPBG creates fewer parallel blocks and needs
much lower processing delay compared to running PSFD at
the edge. Overall, deploying services at the edge by PSFD is
better when the number of required SFs is smaller (less than
10), while deploying services in the cloud by MPBG is more
latency-efficient when the number of required SFs is larger.
Since the SFC length is no more than 8 in practice [47], most
P-NSRs should be deployed at the edge to achieve latency-
efficient service delivery.

0

30

60

90

120

150

180

210

20 24 28 32 36 40

La
te

nc
y

of Edge Nodes

MPBG-Propagation Delay MPBG-Processing Delay
PSFD-Propagation Delay PSFD-Processing Delay

(a) Latency vs. # of edge nodes.

0

1

2

3

4

5

6

0

20

40

60

80

100

120

140

3 5 7 9 11 13

of

 P
ar

al
le

l B
lo

ck

Pr
oc

es
si

ng
 D

el
ay

of Edge Nodes

MPBG-Processing Delay PSFD-Processing Delay

MPBG-Parallel Block PSFD-Parallel Block

(b) LPC vs. # of edge nodes.

Fig. 10: Impact of # of edge nodes on MPBG and PSFD.
In Fig. 10, when increasing the number of edge nodes,

the latency of deploying services by MPBG in the cloud
varies, while the latency of deploying services by PSFD at
the edge increases. Again, as the source and destination nodes
are randomly selected from the edge nodes, the propagation
delay of deploying services by MPBG in the cloud fluctuates.
Enlarging the size of the edge network likely makes source
and destination far away from each other, leading to a higher
propagation delay in PSFD. Since the same set of SFs is
required, the processing delay of deploying services by MPBG
in the cloud remains the same. When enlarging the network
size, as different set of edge servers are employed to host SFs
in a P-NSR, the processing delay of deploying services by
PSFD at the edge fluctuates.

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 12

200

300

400

500

600

5 10 15 20 25 30

La
te

nc
y

of P-NSRs

PARC PPC
MPBS-NN PSFD (α=1, β=1)

(a) Latency vs. # of P-NSR.

5

10

15

20

25

30

5 10 15 20 25 30

of

 A
cc

ep
te

d
P-

N
SR

s

of P-NSRs

PARC
PPC
MPBS-NN
PSFD (α=1, β=1)

(b) Acceptance vs. # of P-NSR.

0%

20%

40%

60%

80%

100%

15 20 25 30 35 40

Re
so

ur
ce

 U
til

iz
at

io
n

of P-NSRs

PARC
PPC
MPBS-NN
PSFD (α=1, β=1)

(c) Resource utilization vs. # of P-NSR.

Fig. 11: Performance in 24-node-43-link USNET.

400

500

600

700

800

15 20 25 30 35 40

La
te

nc
y

of P-NSRs

PPCPARC
MPBS-NN PSFD (α=1, β=1)

(a) Latency vs. # of P-NSR.

15

20

25

30

35

40

15 20 25 30 35 40

of

 A
cc

ep
te

d
P-

N
SR

s

of P-NSRs

PARC
PPC
MPBS-NN
PSFD (α=1, β=1)

(b) Acceptance vs. # of P-NSR.

0%

20%

40%

60%

80%

100%

15 20 25 30 35 40

Re
so

ur
ce

 U
til

iz
at

io
n

of P-NSRs

PARC
PPC
MPBS-NN
PSFD (α=1, β=1)

(c) Resource utilization vs. # of P-NSR.

Fig. 12: Performance in 40-node-180-link mesh network.

D. Performance Evaluation with Online Traffic

In this section, we evaluate PSFD when P-NSRs are gen-
erated in an online fashion and will stay in the network once
accommodated. We use 24-node-43-link USNET and 40-node-
180-link randomly-generated mesh network topology in our
experiments. Note that the random network is generated based
on JAVA language by first generating a tree with 40 nodes and
then adding links to ensure the existence of 180 links in the
network. The computing resources of each physical node and
bandwidth resources of each physical link are randomly set
in discrete-uniform ranges [100, 300] Gb and [50, 100] Gbps,
respectively. The number of required SFs is set to {5, 10, 15,
20, 25} with an even distribution [18], [19], [44].

We implement and improve the proposed MPBS algorithm,
partial parallel chaining (PPC) [45], and the parallelism-aware
residual capacity first placement (PARC) algorithm [44] to
compare with PSFD. We name the algorithm improved from
MPBS as MPBS with nearest-neighbor (MPBS-NN). MPBS-
NN is implemented by (i) selecting the node with the highest
betweenness centrality value from source to the destination;
(ii) creating and embedding the largest parallel block that
this physical node can host; (iii) repeating steps (i) and (ii)
until all SFs are embedded; and (iv) applying the nearest-
neighbor algorithm to connect the source with the destination
going through all physical nodes that host parallel block(s).
We extend PPC by (i) generating all possible size vectors to
indicate all possible P-SFCs; (ii) selecting one with the least
processing delay; (iii) if PN can accommodate the constructed
P-SFC, creating the corresponding parallelism-aware layered
graph, otherwise, denying the request; (iv) if the parallelism-

aware layered graph is created by step (iii), finding the shortest
path in the constructed layered graph as the SFP. The PARC
is extended by (i) randomly generating an SFC based on
P-NSR, and setting the source s as the endpoint ne; (ii)
creating the P-SFC with least processing latency by exhaustive
search; (iii) embedding as many parallel blocks as possible to
physical node δ with the highest residual computing resources,
connecting δ to ne, and updating ne as δ; (iv) repeating
step (iii) until all SFs are embedded; and (v) connecting
ne with the destination to formulate the SFP. Note that, if
the extended algorithms cannot accommodate an incoming
P-NSR, it will be denied and counted as unaccepted. We
evaluate the performances of PSFD, MPBS-NN, PPC, and
PARC regarding: (i) service end-to-end latency, (ii) number
of accepted P-NSRs, and (iii) resource utilization ratio.

Figs. 11 and 12 present the performances of PSFD, MPBS-
NN, PPC, and PARC in USNET and 40-node network, re-
spectively. The latency and acceptance performances of PARC,
MPBS-NN, PPC, PSFD (α=1, β=1) are denoted by the green
circled-solid, red rhombus-dashed, blue triangle-dashed, and
grey square-dotted curves, respectively. The resource utiliza-
tion performances of those algorithms are represented by the
green bar, red bar, blue bar, and grey bar, respectively.

In Fig. 11a, when increasing the number of P-NSRs, the
performances of all schemes show the trend of increasing at
first and then decreasing. When the algorithms are embedding
more P-NSRs to the PN, the network resources of some key
links or nodes are running out. Then, the algorithm needs
to accommodate a P-NSR via a longer SFP, thus increas-
ing the average service latency. As the network resources

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 13

are running out, all schemes begin accommodating the P-
NSRs with fewer SFs while denying the P-NSRs with many
SFs. As the SFP generated for a small number of SFs is
generally short, the average service latency of all SFPs later
decreases. Even though the PARC algorithm creates the P-
SFC with the least processing latency using exhaustive search,
the embedding policy of PARC will accommodate the parallel
block on the physical node with many residual computing
resources, which likely will introduce detour routing pro-
cesses, thus leading to high service latency. MPBS-NN creates
large parallel blocks and embeds the block on the physical
node with high betweenness centrality value to reduce both
processing and propagation delays. When the system load
is low, MPBS-NN accommodates P-NSRs with a relatively
lower service latency than PARC does. When more P-NSRs
are accommodated, the network resources of the links and
nodes with high betweenness centrality value runs out, and
MPBS-NN has to employ longer routing paths for creating
SFPs, leading to a sharp increase in average service latency.
PPC generates the P-SFC with the least processing delay and
accommodates it by establishing a layered graph to reduce
the propagation latency. It outperforms PARC and MPBS-NN
according to the service latency. However, the processing delay
and propagation delay are independently optimized. A large
parallel block might be deployed far away from the others,
leading to a relatively higher overall latency than PSFD.
PSFD jointly takes processing delay, propagation delay, and
computing resources usage (i.e., V sub) into account and can
dynamically pick the better-fit physical node to reduce the
service latency. In Figs. 11b and 11c, PARC has the highest
acceptance and resource utilization. Meanwhile, PPC has the
worst acceptance. This is because PPC greedily creates large
parallel blocks to optimize processing delay, and there might
not exist a physical node with enough computing resources to
host such large blocks. Interestingly, MPBS-NN accepts fewer
P-NSRs but has higher resource utilization compared to PSFD.
This is because the static path-selection method (i.e., selecting
the node with the highest betweenness centrality value) will
quickly fill capacities of key links and nodes, which will lead
the later P-NSRs to be accommodated via detours, thus leading
to higher service latency and resource utilization.

Fig. 12 shows the performances of PSFD, MPBS-NN, PPC,
and PARC in the 40-node mesh network. Similarly, PSFD out-
performs MPBS-NN, PPC, and PARC in service latency, while
PARC has the highest acceptance and resource utilization. It
is worth noting that all schemes in this larger network have
higher acceptance than USNET. Higher connectivities mitigate
the pressure of running out of bandwidth resources for key
links because more physical links can be used for substitutions.
Numerically, in our examples, the average acceptance ratios
for all four schemes are 66.7% and 80.6% in USNET and
40-node networks, respectively. In addition, the performance
gap between PSFD and MPBS-NN/PPC/PARC in Fig. 11a and
Fig. 12a becomes smaller. Regarding the service latency in our
examples, PSFD, on average, outperforms MPBS-NN by 32%
and 15%, PPC by 29.4% and 10.1%, and PARC by 58% and
42% in USNET and 40-node network, respectively.

IX. CONCLUSION

This paper comprehensively investigated how to minimize
the latency in the parallelism-aware service function chaining
and embedding (PSFCE) problem. When each physical node
has enough computing resources to host all required SFs,
SFP propagation delay can be optimized by embedding the
required SFs along the bandwidth-aware shortest path. We
have proposed the maximum parallel block gain (MPBG) first
optimization algorithm to efficiently create a parallelism-based
SFC (P-SFC) with a low processing delay. When computing
resources at each physical node are limited such that the
required SFs have to be accommodated by multiple physical
nodes, we proposed the parallelism-aware SF deployment
(PSFD) algorithm to jointly optimize processing and propaga-
tion delays. Through thorough analysis, we showed that PSFD
is in general logarithm-approximate. For different network
settings, we have shown that PSFD can effectively optimize
the end-to-end latency and outperform the schemes directly
extended from existing works. Additionally, we had the fol-
lowing findings: (i) MPBG achieves near-optimal performance
when computing resources are enough at every physical node,
(ii) when the computing resources are limited, the end-to-end
latency largely depends on the optimization of SFs’ processing
delay in small networks, and (iii) to achieve latency-efficient,
short P-SFCs (with less than 10 SFs) should be deployed at
the edge, while long P-SFCs should be deployed in the cloud.
Future work should investigate the end-to-end service latency
optimization problem of P-SFC composition and embedding
when considering SF dependencies and parallel relationships
for latency-deterministic network scenarios.

REFERENCES

[1] “ETSI GS NFV-MAN 001: Network functions virtualisation (NFV);
management and orchestration,” v. 1.1.1, Dec. 2014.

[2] J. Halpern and C. Pignataro, “Service function chaining (SFC) architec-
ture,” https://tools.ietf.org/html/rfc7665, 2015.

[3] P. Quinn and T. Nadeau, “Problem statement for service function
chaining,” https://tools.ietf.org/html/rfc7498, 2015.

[4] G. Li, Y. R. Yang, F. Le, Y. Lim, and J. Wang, “Update algebra: Toward
continuous, non-blocking composition of network updates in SDN,” in
Proc. IEEE INFOCOM, 2019, pp. 1081–1089.

[5] G. Jung, P. Rahimzadeh, Z. Liu, S. Ha, K. Joshi, and M. A. Hiltunen,
“Virtual redundancy for active-standby cloud applications,” in Proc.
IEEE INFOCOM, 2018, pp. 1916–1924.

[6] Y. Wu, H. Huang, C. Wang, and Y. Pan, 5G-Enabled Internet of Things.
CRC Press, 2019.

[7] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider, “NFV and SDN
key technology enablers for 5G networks,” IEEE J. Sel. Areas Commun.,
vol. 35, no. 11, pp. 2468–2478, 2017.

[8] A. A. Ahmed and A. A. Alzahrani, “A comprehensive survey on
handover management for vehicular ad-hoc network based on 5G mobile
networks technology,” Trans. Emerg. Telecommun. Technol., vol. 30,
no. 3, 2019.

[9] E. Yaacoub and M. Alouini, “A key 6G challenge and opportunity -
connecting the base of the pyramid: A survey on rural connectivity,” P.
IEEE, vol. 108, no. 4, pp. 533–582, 2020.

[10] L. Ruan, M. P. I. Dias, and E. Wong, “Towards self-adaptive bandwidth
allocation for low-latency communications with reinforcement learning,”
Opt. Switch. Netw., vol. 37, p. 100567, 2020.

[11] H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun, “Towards low latency
multi-viewpoint 360 interactive video: A multimodal deep reinforcement
learning approach,” in Proc. IEEE INFOCOM, 2019, pp. 991–999.

[12] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing: A key technology towards 5G,” ETSI White Paper, vol. 11,
no. 11, pp. 1–16, 2015.

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, XXXX 2022 14

[13] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling network
function parallelism in NFV,” in Proc. ACM SIGCOMM, 2017, pp. 43–
56.

[14] I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the 6G
network era: Opportunities and challenges,” IT Prof., vol. 22, no. 1, pp.
34–38, 2020.

[15] H. Hawilo, M. Jammal, and A. Shami, “Network function virtualization-
aware orchestrator for service function chaining placement in the cloud,”
IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 643–655, 2019.

[16] R. Yu, G. Xue, and X. Zhang, “QoS-aware and reliable traffic steering
for service function chaining in mobile networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2522–2531, 2017.

[17] G. Sallam, G. R. Gupta, B. Li, and B. Ji, “Shortest path and maximum
flow problems under service function chaining constraints,” in Proc.
IEEE INFOCOM, 2018, pp. 2132–2140.

[18] D. Zheng, C. Peng, X. Liao, and X. Cao, “Towards optimal hybrid
service function chain embedding in multi-access edge computing,”
IEEE Internet Things J., vol. 7, no. 7, pp. 6035–6045, 2020.

[19] D. Zheng, C. Peng, X. Liao, L. Tian, G. Luo, and X. Cao, “Towards
latency optimization in hybrid service function chain composition and
embedding,” in Proc. IEEE INFOCOM, 2020, pp. 1–10.

[20] A. Hmaity, M. Savi, L. Askari, F. Musumeci, M. Tornatore, and
A. Pattavina, “Latency- and capacity-aware placement of chained virtual
network functions in FMC metro networks,” Opt. Switch. Netw., vol. 35,
2020.

[21] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware VNF chain
deployment with efficient resource reuse at network edge,” in Proc. IEEE
INFOCOM, 2020, pp. 1–10.

[22] X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the service function
chain bakcup cost over the edge and cloud by a self-adapting scheme,”
in Proc. IEEE INFOCOM, 2020, pp. 1–10.

[23] G. Sallam and B. Ji, “Joint placement and allocation of virtual network
functions with budget and capacity constraints,” in Proc. IEEE INFO-
COM, 2019, pp. 523–531.

[24] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement with
provable guarantees in heterogeneous edge computing systems,” in Proc.
IEEE INFOCOM, 2019, pp. 514–522.

[25] T. Kuo, B. Liou, K. C. Lin, and M. Tsai, “Deploying chains of virtual
network functions: On the relation between link and server usage,”
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1562–1576, 2018.

[26] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz, “Near optimal place-
ment of virtual network functions,” in Proc. IEEE INFOCOM, 2015, pp.
1346–1354.

[27] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive VNF scaling and flow
routing with proactive demand prediction,” in Proc. IEEE INFOCOM,
2018, pp. 486–494.

[28] J. Baranda, G. Avino, J. Mangues-Bafalluy, L. Vettori, R. Martı́nez,
C. F. Chiasserini, C. Casetti, P. Bande, M. Giordanino, and M. Zanzola,
“Automated deployment and scaling of automotive safety services in
5G-transformer,” in Proc. IEEE NFV-SDN, 2019, pp. 1–2.

[29] A. Sheoran, X. Bu, L. Cao, P. Sharma, and S. Fahmy, “An empirical
case for container-driven fine-grained VNF resource flexing,” in Proc.
IEEE NFV-SDN, 2016, pp. 121–127.

[30] T.-M. Nguyen, M. Minoux, and S. Fdida, “Optimizing resource utiliza-
tion in NFV dynamic systems: New exact and heuristic approaches,”
Comput. Netw., vol. 148, pp. 129–141, 2019.

[31] A. Sheoran, P. Sharma, S. Fahmy, and V. Saxena, “Contain-ed: An NFV
micro-service system for containing E2E latency,” ACM SIGCOMM
Comput. Commun. Rev., vol. 47, no. 5, pp. 54–60, 2017.

[32] Z. Luo, C. Wu, Z. Li, and W. Zhou, “Scaling geo-distributed network
function chains: A prediction and learning framework,” IEEE J. Sel.
Areas Commun., vol. 37, no. 8, pp. 1838–1850, 2019.

[33] D. Harutyunyan, N. Shahriar, R. Boutaba, and R. Riggio, “Latency and
mobility-aware service function chain placement in 5G networks,” IEEE
Trans. Mob. Comput., pp. 1–1, 2020.

[34] B. Yi, X. Wang, K. Li, S. K. Das, and M. Huang, “A comprehensive
survey of network function virtualization,” Comput. Netw., vol. 133, pp.
212–262, 2018.

[35] Cisco, “Cisco NFV solution: Enabling rapid service innovation in the
era of virtualization,” https://www.cisco.com/c/dam/global/shared/assets/
pdf/sp04/nfv-solution.pdf, 2014.

[36] Huawei-Industrial-Base, “White paper - Huawei observation to NFV,”
https://www.huawei.com/ilink/en/download/HW\ 399662, 2014.

[37] J. Krolikowski, S. Martin, P. Medagliani, J. Leguay, S. Chen, X. Chang,
and X. Geng, “Joint routing and scheduling for large-scale deterministic
IP networks,” Comput. Commun., vol. 165, pp. 33–42, 2021.

[38] B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi,
“Latency-aware composition of virtual functions in 5g,” in Proc. IEEE
NetSoft, 2015, pp. 1–6.

[39] W. Bao, D. Yuan, B. B. Zhou, and A. Y. Zomaya, “Prune and plant:
Efficient placement and parallelism of virtual network functions,” IEEE
Trans. Computers, vol. 69, no. 6, pp. 800–811, 2020.

[40] J. Cai, Z. Huang, J. Luo, Y. Liu, H. Zhao, and L. Liao, “Composing and
deploying parallelized service function chains,” J. Netw. Comput. Appl.,
vol. 163, p. 102637, 2020.

[41] X. Lin, D. Guo, Y. Shen, G. Tang, and B. Ren, “DAG-SFC: minimize
the embedding cost of SFC with parallel VNFs,” in Proc. ACM ICPP,
2018, pp. 15:1–15:10.

[42] R. Wang, J. Luo, F. Dong, and D. Shen, “ParaNF: Enabling delay-
balanced network function parallelism in NFV,” in Proc. IEEE CSCWD,
2019, pp. 392–397.

[43] Y. Zhang, Z. Zhang, and B. Han, “Hybridsfc: Accelerating service
function chains with parallelism,” in Proc. IEEE NFV-SDN, 2019, pp.
1–7.

[44] S. Xie, J. Ma, and J. Zhao, “Flexchain: Bridging parallelism and
placement for service function chains,” IEEE Trans. Netw. Serv. Manag.,
vol. 18, no. 1, pp. 195–208, 2021.

[45] I. Lin, Y. Yeh, and K. C. Lin, “Toward optimal partial parallelization
for service function chaining,” IEEE/ACM Trans. Netw., vol. 29, no. 5,
pp. 2033–2044, 2021.

[46] D. Shen, H. Liu, R. Wang, F. Dong, and F. Li, “Paragraph: Subgraph-
Level network function composition with delay balanced parallelism,”
IEEE Access, vol. 8, pp. 199 308–199 322, 2020.

[47] S. Kumar, C. Obediente, M. Tufail, S. Majee, and C. Captari, “Service
function chaining use cases in data centers,” https://datatracker.ietf.org/
doc/html/draft-kumar-sfc-dc-use-cases-02, 2014.

[48] B. Zhang and H. Mouftah, “Fast bandwidth-constrained shortest path
routing algorithm,” IEE Proc. Commun., vol. 153, no. 5, pp. 671–674,
2006.

[49] W. Sun, J. Hao, X. Lai, and Q. Wu, “Adaptive feasible and infeasible
TABU search for weighted vertex coloring,” Inf. Sci., vol. 466, pp. 203–
219, 2018.

[50] J. Hromkovic, Algorithmics for Hard Problems - Introduction to Com-
binatorial Optimization, Randomization, Approximation, and Heuristics,
Second Edition. Springer, 2004.

[51] C. M. Li and Z. Quan, “An efficient branch-and-bound algorithm based
on maxsat for the maximum clique problem,” in Proc. AAAI, 2010.

[52] P. S. Segundo, F. Furini, and J. Artieda, “A new branch-and-bound
algorithm for the maximum weighted clique problem,” Comput. Oper.
Res., vol. 110, pp. 18–33, 2019.

[53] H. Jiang, C. Li, and F. Manyà, “An exact algorithm for the maximum
weight clique problem in large graphs,” in Proc. AAAI, 2017, pp. 830–
838.

[54] H. Jiang, C. Li, Y. Liu, and F. Manyà, “A two-stage MaxSAT reasoning
approach for the maximum weight clique problem,” in Proc. AAAI, 2018,
pp. 1338–1346.

[55] Y. Wu, M. Tornatore, S. Ferdousi, and B. Mukherjee, “Green data center
placement in optical cloud networks,” IEEE Trans. Green Commun.
Netw., vol. 1, no. 3, pp. 347–357, 2017.

[56] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “VNF
placement optimization at the edge and cloud,” Future Internet, vol. 11,
no. 3, p. 69, 2019.

[57] I. Jang, D. Suh, S. Pack, and G. Dán, “Joint optimization of service
function placement and flow distribution for service function chaining,”
IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2532–2541, 2017.

[58] Z. Zhou, Q. Wu, and X. Chen, “Online orchestration of cross-edge
service function chaining for cost-efficient edge computing,” IEEE J.
Sel. Areas Commun., vol. 37, no. 8, pp. 1866–1880, 2019.

