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Survey on Machine Learning-Enabled Network
Slicing: Covering the Entire Life Cycle

Adnei Donatti, Sand L. Correa, Joberto S. B. Martins, Antonio Abelem, Cristiano B. Both, Flavio Silva, José A.
Suruagy, Rafael Pasquini, Rodrigo Moreira, Kleber V. Cardoso and Tereza C. Carvalho

Abstract—Network slicing (NS) is becoming an essential ele-
ment of service management and orchestration in communication
networks, starting from mobile cellular networks and extending
to a global initiative. NS can reshape the deployment and
operation of traditional services, support the introduction of
new ones, vastly advance how resource allocation performs in
networks, and notably change the user experience. Most of
these promises still need to reach the real world, but they have
already demonstrated their capabilities in many experimental
infrastructures. However, complexity, scale, and dynamism are
pressuring for a Machine Learning (ML)-enabled NS approach
in which autonomy and efficiency are critical features. This trend
is relatively new but growing fast and attracting much attention.
This article surveys Artificial Intelligence-enabled NS and its
potential use in current and future infrastructures. We have
covered state-of-the-art ML-enabled NS for all network segments
and organized the literature according to the phases of the NS life
cycle. We also discuss challenges and opportunities in research
on this topic.

Index Terms—Network Slicing, ML-enabled slicing, Machine
Learning, Slicing-as-a-Service, ML-enabled Resource Orchestra-
tion, and Allocation.

I. INTRODUCTION

Over the last decade, wireless networking technology has
been mainly driven by advanced networking applications
such as Industry 4.0, immersive media applications (e.g.,
virtual/augmented/mixed reality), and mission-critical services
(e.g., self-driving vehicles and automated traffic control sys-
tems) [1]. Following this trend, the fifth-generation (5G) cel-
lular networks have been designed to provide higher latency,
bit rate, and reliability performance, fostering the digital trans-
formation of vertical industries [2]. A requirement to achieve
this goal is to support different communication services, e.g.,
Machine Type Communication (mMTC), Enhanced Mobile
Broadband (eMBB), ultra-Reliable and Low-Latency Commu-
nications (URLLC), with highly different needs, over a shared
network infrastructure [3]. To address this challenge, 5G and
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beyond 5G networks embrace the concept of Network Slicing
(NS) [4]–[6], which logically divides the operator’s network
into isolated, service-tailored, end-to-end networks referred to
as network slices. The NS concept brings several advantages
to network operators [7]. First, NS allows multiple tenants
to share the same physical network infrastructure and reduce
network deployment and operation costs. Second, with NS,
each network slice is instantiated to satisfy a particular set of
applications, enabling service differentiation and guaranteeing
Service Level Agreement (SLA) for each application type.
Finally, NS increases flexibility in network management, as
network slices can be created, modified, and decommissioned
as needed. However, to fully exploit the advantages of NS,
operators have to provide dynamic resource allocation, service
assurance, isolation and protection, and optimized partitioning
of resources across all network domains, i.e., Radio Access
Network (RAN), Transport Network (TN), and Core Network
(CN), and throughout the entire slice life cycle, from the
slice preparation to the slice decommissioning. Therefore, the
benefits of NS come at the price of higher complexity in
operating and managing wireless networks.

Currently, the realization of the NS concept relies heav-
ily on paradigms such as Network Function Virtualization
(NFV), Software-Defined Network (SDN), and cloud comput-
ing. Together, these technologies provide the means of control
for dynamically allocating the necessary resource capacities
across the network and resizing and moving workloads at
runtime to meet the needs of services, regardless of network
conditions [14]. However, although these means of control are
already available, the decision-making process that triggers
their execution depends on static policies and human inter-
vention [1], [22]. Therefore, the full realization of the NS
paradigm depends on further automation and the closure of
management control loops.

Due to advances in algorithms and the increase in computa-
tional power, in recent years, Artificial Intelligence (AI), and
Machine Learning (ML) in particular, has become an essential
enabling technology to achieve good performance in complex
decision-making problems [23]. Indeed, ML techniques are
enablers of numerous problems involving multiple objectives
subject to many heterogeneous and dynamic requirements
[7], [24]. NS, in turn, is a current trend that, as a problem,
inherently has multiple objectives, potentially deals with many
domains and technologies, and supports numerous users and
heterogeneous requirements. Therefore several works have
applied ML to deal with distinct challenges during the slice
life cycle. Yang et al. [25] proposed an intent-driven optical
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TABLE I
COMPARISON OF RELATED SURVEYS.

Paper Main focus Focus on ML Existing works are surveyed Study’s Orientation
[6] NS concepts 7 3 Background-oriented
[8] NS concepts 7 3 Background-oriented
[9] NS concepts 7 3 Background-oriented
[10] NS concepts 7 7 Background-oriented
[11] NS concepts 7 3 Background-oriented
[12] NS implementation aspects 7 3 SDN and NFV-oriented
[13] NS implementation aspects 7 3 SDO-oriented
[14] NS implementation aspects 7 3 Network segment-oriented
[15] NS implementation aspects 7 3 IoT-oriented
[16] NS algorithmic aspects 7 7 VNF placement-oriented
[17] NS algorithmic aspects 7 3 Resource allocation perspective
[18] NS algorithmic aspects 7 3 Resource allocation perspective
[19] NS algorithmic aspects 3 3 Resource allocation perspective
[7] NS algorithmic aspects 3 3 RAN-oriented
[20] NS algorithmic aspects 3 7 LCM-oriented
[21] NS algorithmic aspects 3 7 LCM-oriented

This survey NS algorithmic aspects 3 3 LCM-oriented

NS that maps high-level intents into slice requirements for the
transport network using Latent Dirichlet Allocation. Sciancale-
pore et al. [26] designed an online network slice broker that
decides which slices to accept while opportunistically pursuing
the NS multiplexing gain maximization using a variant of
the Multi-Armed Bandit (MAB) model. Kibalya et al. [27]
formulated the multi-domain slicing as a multisubstrate Virtual
Network Embedding (VNE) problem and proposed a Deep
Reinforcement Learning (DRL) algorithm to solve it. Bega
et al. [28] proposed a Deep Learning (DL) algorithm that
anticipates future slice needs and timely reallocates/deallocates
resources where and when they are required. Although these
works have shown the potential of ML for supporting the
emerging need for autonomous network slice operation and
management, the literature has only unsystematically ad-
dressed individual problems. Consequently, there is a need
to investigate and reorganize the current proposals for a
comprehensive view of the fundamental network slice Life
Cycle Management (LCM) problems and the existing ML
proposals to deal with them.

A. Related surveys

Several existing surveys have discussed the implications of
the NS concept for next-generation mobile networks. Foukas et
al. [6], Afolabi et al. [8], Kaloxylos [9], Zhang [10], and Khan
et al. [11] provided the research community with a general
understanding of the topic, addressing NS in terms of basic
concepts, enabling technologies, use cases, and challenges.

Some surveys have discussed the implementation aspects
of NS. Barakabitze et al. [12] provided a comprehensive
review of solutions for NS using SDN and NFV. Various 5G
architectural approaches were compared in terms of practi-
cal implementations in their work. Chahbar et al. [13] and
Ordonez-Lucena et al. [14] focused on the ongoing work on
NS modeling in RAN, TN, and CN domains performed by
different Standards Developing Organization (SDO). Wijethi-
laka and Liyanage [15] studied the contribution of NS to the
Internet of Things (IoT) realization.

The algorithmic aspects of NS have also been discussed
in the literature [16]–[18]. Specifically, Vassilaras et al. [16]
formulated NS as an optimization problem of placing Vir-
tualized Network Functions (VNFs) over a set of candidate
locations and deciding their interconnections. Su et al. [17]
surveyed the resource allocation schemes for NS using three
mathematical models: game theory, prediction techniques,
and robustness/failure recovery models. Debbabi et al. [18]
reviewed the state-of-the-art NS regarding two algorithmic
challenges: slice resource allocation and slice orchestration.
Nevertheless, these surveys considered only a few algorithmic
aspects of NS, and none focused on ML solutions. Indeed,
the need to use ML for network slice operation and man-
agement was first discussed by Kafle et al. [20]. The authors
described the management functions of network slices that
could be automated using ML and listed relevant techniques
for automating such functions. However, the authors did not
survey existing works and proposed solutions. More recently,
Shen et al. [7] surveyed ML solutions applied to intelligent NS
management. Nevertheless, the authors considered only three
specific RAN problems: flexible radio access NS, automatic
Radio Access Technology (RAT) selection, and mobile edge
caching and content delivery. Wu et al. [21] discussed a broad
picture of the role of AI in sixth-generation (6G) networks,
highlighting potential NS problems where AI could be applied
to facilitate intelligent network management. However, similar
to [20], the authors did not survey existing works and proposed
solutions. Ssengonzi et al. [19] presented a survey of 5G NS
and virtualization from a Reinforcement Learning (RL) and
DRL perspective. Nevertheless, the authors focused only on
existing RL and DRL approaches and a few NS problems,
such as resource allocation, admission control, and traffic
forecasting.

Table I summarizes the main characteristics of existing
surveys and our work, comparing them in terms of their
main focus (i.e., NS concepts, NS implementation aspects, or
NS algorithmic aspects), whether ML is considered, whether
existing solutions are discussed, and the main criteria driving
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the study. As illustrated in the table, a comprehensive survey
of ML applied to solve network slice LCM problems is still
missing.

B. Research Scope and Methodology

The primary goal of this work is to provide the reader
with a comprehensive survey of the use of ML for intelligent
network slice LCM, from the slice preparation to their de-
commissioning, after the 3rd Generation Partnership Project
(3GPP) life cycle [29] and covering all network domains
(RAN, TN, and CN). We studied and assessed high-quality
research published since 2016, available in the vehicles In-
stitute of Electrical and Electronics Engineers (IEEE)Xplore,
Association for Computing Machinery (ACM) Digital Library,
Science Direct, and Wiley Online Library. We introduce the
existing works in terms of the problem they address (e.g., slice
admission control, resource allocation, VNF placement) after
the 3GPP slice life cycle. Fig. 1 illustrates the organization
of the article while Table V summarizes the commonly-used
abbreviations.

Overview

(Section II)

ML-enabled 

network slicing

Open issues

(Section VI)

Preparation 

phase 

(Section III)

Commissioning

phase

(Section IV)

A. Intelligent translation for NS requirements

B. Datasets and experiment reproduction

C. Suitability of the ML technique for NS

D. End-to-end NS

E. Open RAN intelligent slicing

F. From theory to practice

● NS concepts

● Machine learning paradigms

● Service profile for NS requirements

● Slice admission control

● Radio resource sharing

● VNF placement

● Path configuration

Operation 

phase

(Section V)

● Network slice elasticity

● User admission control

● Traffic classification and prediction

● Anomaly detection

● Task offloading

● Congestion control

● RAT selection

● NS with mobility

Final Considerations

(Section VII)

Fig. 1. The structure of the survey.

At the beginning of the slice life cycle, i.e., in the prepa-
ration phase, ML is mainly employed to translate service
profiles into slice requirements and to provide a slice ad-
mission control. In the commissioning phase, ML is applied
for slice resource allocation, slice VNF placement, and slice
path configuration. Next, when the slice becomes operational,
ML is employed for numerous runtime tasks, including user
admission control, task offloading, slice elasticity, anomaly
detection, RAT selection, traffic classification and prediction,
congestion control, and mobility management. We point out

that our survey did not find works applying ML to problems
related to slicing termination, i.e., to the decommissioning
phase. Therefore, decommissioning is not illustrated in Fig.
1. In addition, our survey classifies each article according to
the main problem it addresses, even when the article focuses
on multiple problems and life cycle phases. For example, some
research efforts describe using AI in two or more life cycle
phases, such as [30]. We classify such works according to
their main addressed problem. Finally, although some works
have proposed solutions to network slice LCM problems using
heuristic and genetic algorithms, our survey focuses on su-
pervised, unsupervised, reinforcement, and emerging learning
paradigms. In summary, our main contribution as a survey is
to bring a big picture of the state-of-the-art ML-enabled NS
and organize the existing works from the network slice life
cycle perspective, illustrating the AI/ML methods used in the
distinct phases of the network slice life cycle. Therefore, we
carefully analyze every article and decide the life cycle phase
it fits based on the problem addressed.

This article is organized as follows. Section II presents an
overview of the main concepts related to NS, focusing on NS
management. Next, we thoroughly review the state-of-the-art
solutions for intelligent NS management. We split the related
discussion into ML-enable solutions for NS problems during
the preparation phase (Section III), the commissioning phase
(Section IV), and the operation phase (Section V). We discuss
some open research issues and summarize potential future
directions in Section VI. Finally, Section VII concludes the
article.

II. OVERVIEW AND BACKGROUND

This section focuses on background concepts and key
entities related to NS implementation and slice LCM to get
deeper insights into the NS life cycle problems. Following
the nomenclature proposed by 3GPP, a network slice, or
slice, is a logical network comprising one or more service
chains formed by virtualized or physical network functions
and the (physical/virtual) links connecting them. This logical
network is created with appropriate isolation, resources, and
optimized topology to serve one or more communication
services [29]. Communication service is the term used to
refer to the tenant-ordered service. Usually, the communi-
cation service is expressed by a service profile comprising
the service type, and a service graph, where nodes represent
computing/storage resources and service instances and edges
denote constraints on link bandwidth or packet loss. A network
slice can host multiple communication services if they do not
impose conflicting requirements.

A network slice is an end-to-end concept, i.e., the logical
network can span across all the technical domains (or seg-
ments) within the operator’s network, including the RAN, TN,
and CN domains. In the 5G architecture, the RAN domain
connects User Equipment (UE) to the operator’s network
using various access technologies. The TN domain provides
infrastructure connectivity between the RAN and the data
network using any technology (Internet Protocol (IP), optical,
microwave, or other technology), tunnel (IP/Multiprotocol
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Label Switching (MPLS)), and layer functions [13]. Finally,
the CN domain allows UE to send/receive data to/from the data
network, providing signaling procedures such as connection,
registration, mobility management, and session management.
The part of the slice spanning a technical domain is called a
Network Slice Subnet (NSS). Each NSS is usually deployed
as a set of network functions.

Since a network slice can host multiple services, its life
cycle within the operator’s network is independent of its
associated service(s) life cycle. In particular, the life cycle of
a network slice has four main phases: Preparation, Commis-
sioning, Operation, and Decommissioning. In the preparation
phase, the slice does not exist. Indeed, the preparation phase
comprises all planning steps that precede slice instantiation,
such as slice design, slice onboarding, and slice admission
control. In the first step, the tenant defines the service profile
from which the slice requirements will be derived. In the
second step, the tenant uploads the VNFs that constitute the
slice to the operator’s system. The last step in the prepa-
ration phase decides whether the tenant NS request should
be accepted or rejected based on current system utilization.
In the commissioning phase, resources are assigned to the
admitted slice request. Therefore, the slice is instantiated,
configured, and activated over the operator’s infrastructure
according to its requirements. In the operation phase, the slice
instance goes into operation, and its behavior is monitored
to ensure compliance with the defined requirements. In this
phase, runtime tasks such as upgrade, reconfiguration, scaling,
and capacity changes can be carried out to modify the slice
instance and ensure that it is optimized for its purpose. Finally,
the slice instance is terminated in the decommissioning phase,
and its allocated resources are released.

Since our focus is on AI/ML solutions to NS problems, it
is imperative to introduce the ML paradigms, which are tradi-
tionally classified into three types: Supervised Learning (SL),
Unsupervised Learning (UL), and RL. SL uses labeled training
datasets to build models and is usually employed to solve
classification and regression problems to predict outcomes.
UL creates models using unlabeled training datasets, mainly
employed for clustering problems. In RL, an agent interacts
with the environment via perception and action to learn a
reward or utility. Therefore, an RL agent learns by exploring
the environment instead of being taught by exemplars. The
literature has applied the aforementioned paradigms to solve
some of the NS problems we cover in this survey. In addition,
emergent learning paradigms such as Federated Learning (FL)
and Transfer Learning (TL) have also been employed in
some works. FL focuses on decentralization learning, where
distributed servers train models with local data. TL aims to
utilize the built knowledge of a certain system to solve a
different but related problem. We refer readers unfamiliar with
these paradigms to an introduction in [24], [31], [32].

III. ML FOR NS IN THE PREPARATION PHASE

State-of-the-art NS solutions applied ML techniques for
two problems in the preparation phase. First, we discuss
the translation of service profiles into slice requirements.
Afterward, we present the slice admission control.

A. Translation of Service Profiles into NS Requirements

From the tenant’s perspective, designing a network slice
is a complex task that involves a complete description of
the service topology, details on service configuration and
workflows, and SLA definitions for service assurance. To
make this task easier, network operators provide generic slice
templates to be used as a reference by the tenants when
ordering a network slice. However, some services may not
have a direct mapping to a predefined slice template since
service requirements may vary widely. For instance, some
services may have ultra-low latency, high bandwidth, and high-
reliability requirements at the same time. An alternative to
this problem is to derive the slice requirements from service
profiles defined through high-level intents. Despite much work
on intent-driven networking [33], [34], we found only two
articles addressing the intent-based design of network slices.

The first work, proposed by Gritli et al. [35], takes into
consideration the set of tenant’s intents, expressed as Quality
of Service (QoS) requirements, and the operator’s grouping
policies defining the supported slice types and their QoS
characteristics. The goal is to determine all slice solutions
supporting the tenant’s order compliant with the operator’s
grouping policies. To this end, the approach first maps the
slice type(s) to each intent, mapping them separately to the
operator’s policies. It then merges these slices based on
criteria such as the operator’s policies they comply with and
isolation and placement constraints. However, the approach
presented in [35] is model-based and, thus, does not use ML.
The second work, proposed by Yang et al. [25], develops
a mechanism based on ML to translate service intents into
a slicing configuration language. The proposed mechanism
employs the Latent Dirichlet Allocation algorithm to extract
keywords from an optical network topic model and construct
an intent theme model. The intent issued by the users is a
mixed distribution of certain topics, which is also a probability
distribution of words. If the intent topic is found, the keyword
in the topic is also the core meaning of this intent. To associate
intent keywords with QoS constraints, the authors propose
using an experienced database. The evaluation uses a discrete
intent service emulator and a network topology assembled by
OpenAI Gym.

B. Slice Admission Control

Over-provisioning is not possible in 5G and beyond 5G
since infrastructure resources (especially spectrum) are lim-
ited. Therefore, network operators must decide which slice
requests should be admitted or rejected in the infrastructure to
manage resources efficiently. Specifically, the slice admission
control problem is formulated as follows. Upon receiving a
network slice request from a tenant, the operator’s system
must decide whether to accept or reject the tenant’s request,
pursuing a predefined objective while still honoring the agreed
SLAs for previously accepted network slice requests. Such a
decision is challenging as it must consider the total available
system capacity, randomly arriving tenant requests, real net-
work utilization within the already instantiated slices, and the
Quality of Experience (QoE) perceived by the end-users. This
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section introduces recent works that applied ML to solve the
slice admission control problem.

Bega et al. [36] address the problem of designing a slice ad-
mission control that maximizes the network operator revenue
while satisfying the desired service guarantees. The authors
consider two types of slices: elastic, which does not require
any instantaneous throughput guarantees, and inelastic, which
requires a certain fixed throughput to be satisfied during the
entire slice life cycle. Only the RAN segment is considered in
work. The slice type, slice duration, the slice size in terms of
the number of users, and the price per time unit characterize a
slice request. The problem is formulated as a Semi-Markov
Decision Process (SMDP), where the elastic and inelastic
network slice requests follow a Poisson process. Each state
is modeled as a three-sized tuple representing the number of
elastic and inelastic slices in the system at a given decision
time and the next event (new arrival of an elastic or inelastic
slice request or departure of a slice of any type) that triggers
a decision process. The possible actions include admitting a
new request for an elastic or inelastic slice or rejecting the
new request. In the first case, the resource associated with the
request is granted to the tenant, and the operator immediately
earns a reward, computed as the product of the slice type price
and duration. The second case has no immediate reward, but
the resources remain accessible for future requests. Requests
that are rejected are no longer considered by the system. The
SMDP problem is then solved using Q-Learning (QL), an RL
algorithm where the learning function that maps the input state
to the expected reward when taking a specific action is realized
as a lookup table. Simulations with the slice duration following
an exponential distribution showed that QL achieved close to
optimal performance.

Despite the good performance, an inherent drawback of RL
algorithms such as QL is their lack of scalability when the
state space becomes too large. Inspired by this limitation, in
a later work, Bega et al. [37] propose a Deep Q-Learning
(DQL) algorithm, named NS Neural Network Admission
Control (N3AC), to solve the slice admission problem. DRL
algorithms use Neural Networks (NNs) to generalize the
experience learned from some states to be applied to other
states with similar features. In particular, N3AC uses a feed-
forward NN structure, where the neurons of one layer are fully
interconnected with the neurons of the next. In addition, N3AC
relies on a single hidden layer and uses the Gradient Descent
approach to back-propagate the measured error at the output
layer to the input layer. Furthermore, N3AC does not apply
any ground truth to train the NN. This training is achieved
using output estimations, which become more accurate as
explorations are performed. The performance of N3AC was
evaluated through simulation where the service time follows
an exponential distribution and slice request arrivals follow a
Poisson process.

Similar to [37], Bakri et al. [38] proposed a DQL algorithm
to solve the slice admission problem. The authors compare the
performance of the DQL solution with two other algorithms:
QL, and Regret Matching. The QL and DQL approaches are
evaluated using the offline version of the algorithms, while
Regret Matching performs online. Results show that Regret

Matching reacts faster to load change than the other two
algorithms.

Dandachi et al. [39] propose a slice admission control con-
sidering communication, computing, and storage resources to
maximize resource utilization and operator revenue. The slice
admission control considers two types of slices, Best Effort
(BE) and guaranteed QoS slices, with elastic requirements.
Resources from the RAN and CN domains are considered. The
slice admission control comprises two steps: at the beginning
of each time slot, the slice admission control evaluates the
similarity between the income requests and the slices already
active in the system to identify slice instances that can serve
the new slice requests with a minimum amount of additional
resources. The first step uses a normalized spectral clustering
algorithm based on the Jaccard similarity, while the sec-
ond is implemented using State-Action-Reward-State-Action
(SARSA). In the second step, based on the current state of
system utilization, the admission control first decides whether
to scale down the resources allocated to BE slice instances,
then selects the income slice requests to admit. Evaluation is
carried out by simulation using slice templates customized by
the authors.

Reza et al. [40] propose an RL agent to decide whether
or not a new slice request should be accepted. A slice
request is specified in terms of its duration, service type
(priority), and the number of Central Processing Unit (CPU)
and link resources needed. The objective is to maximize the
network operator’s total revenue while matching the service
requirements of the slices in operation as closely as possible.
The work focuses on the RAN domain. The RL agent is
implemented using a NN that receives the slice request and
the resources currently available in the system as input. NN
minimizes the loss of revenue derived by rejecting the slice
requests and the loss derived by degrading the service of a
slice in operation. NN is trained in an episodic manner, and
at the end of an episode, the cumulative reward for all the
actions up to the current point in time is computed. Evaluation
is performed using a custom-built simulator, where the inter-
arrival time of requests and slice duration are exponentially
distributed.

Bakhshi et al. [41] propose a slice admission control in a
federated environment formed by one consumer and provider
domain. For a given slice request, the admission control
decides whether to deploy the slice in the consumer or the
provider domain or reject it. The decision is based on the cost
of deploying the slice locally (consumer domain) or remotely
(provider domain) and on the current resource availability. The
model is focused on computing resources, thus more suitable
for the edge, CN, and cloud domains. The authors compare the
performance of two RL algorithms for solving the problem:
QL and R-Learning, an average reward learning algorithm.
Results are obtained through simulation using customized slice
templates and show that R-Learning performs better than QL
for the federated problem due to QL’s dependency on the
discount factor.

Sciancalepore et al. [26] propose the concept of slice
overbooking, where more slice requests are admitted than the
overall system capacity to maximize the operator revenue. In
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TABLE II
SUMMARY OF ML-APPROACHES FOR NS PROBLEMS IN THE PREPARATION PHASE.

Ref. NS Learning Learning Resource Network Performance
Problem Paradigm Method Type Segment Evaluation
Service profile NLP Latent Dirichlet Network, computing, Emulation - Custom-built intent[25]
translation Allocation storage

TN
service

[36]
Slice admission

RL QL Network RAN
Simulation - Poisson distribution

control for request and exponential
distribution for slice duration

Slice admission[37]
control

RL DQL Network RAN Simulation - Similar to [36]

[38] Slice admission RL QL, DQL, Network RAN Simulation - Similar to [36]
control Regret Matching
Slice admission Norm. spectral clustering, Network, computing, RAN, Simulation - Customized slice templates[39]
control

UL, RL
SARSA storage CN

[40]
Slice admission

RL DRL
Network,

RAN
Simulation - Exponential distribution

control computing for request inter-arrival time and
slice duration

Slice admission QL, Edge, CN, Simulation - Customized slice templates[41]
control

RL
R-Learning

Computing
cloud

[26] Slice admission RL UCB, ONETS, Network RAN Simulation and experimental
control 𝜖 -Greedy

their proposal, a slice request comprises the amount of physical
wireless resources assigned to the slice and its duration. The
slice admission control problem is formulated as an online de-
cision process using a variant of the MAB model. Each tenant
is a bandit that, if pulled at a certain round, returns a particular
reward. Multiple bandits can be pulled at a given round, and
tenants with active slices must be selected while their slices
are operational. If a lock-up period runs, the gambler must
select the same arm as in the previous round. The reward
accounts for the total amount of resources asked within the
slice request and the ratio between what has been used and
what is being asked, following the rationale that tenants under-
utilizing assigned resources are preferred for the ones fully
using them. The authors implement the MAB model using
three RL algorithms: Upper Confidence Bound (UCB), Online
NETwork Slice Broker (ONETS), and 𝜖-Greedy, providing a
trade-off between complexity and sub-optimality. Performance
evaluation is carried out by simulation. In addition, proof-of-
concept implementation is presented considering three network
slices: eMBB for Guaranteed Bit Rate, eMBB for BE, and
Public Safety. Table II summarizes the main characteristics of
the literature related to ML applied to NS problems in the
preparation phase.

IV. ML FOR NS IN THE COMMISSIONING PHASE

In the commissioning phase, NS problems are mainly
related to making resource allocation decisions for the ad-
mitted slices. After being admitted to the system, the slice
is instantiated by allocating resources in the RAN, TN, and
CN domains. A RAN slice subnet comprises the radio access
and processing functions from a set of Base Stations (BSs)
and the allocated Physical Resource Blocks (PRBs) to support
a communication service. A CN slice subnet contains a set
of network services functionalities and associated computing
resources. A TN slice subnet, on the other hand, comprises a
set of connections between a group of virtual or/and physical
network functions from both the RAN and the CN, each one

having its own SLA. This section discusses state-of-the-art ML
solutions for instantiating a slice within the RAN, TN, and CN
domains. First, we discuss ML resource allocation solutions
for instantiating a RAN slice subnet. Then, we present ML
resource allocation approaches for instantiating a TN and a
CN slice subnet.

A. Radio Resource Sharing

RAN slice subnet instantiation is usually formulated as
the problem where the resources of one or more BSs, i.e.,
spectrum, power, antennas, among others, must be shared
between multiple slices [42]. In the literature, the RAN slicing
problem has been tackled on two different levels: planning and
runtime. In the following, we discuss works dealing with RAN
slicing at the planning level. At the runtime level, RAN slicing
is realized through slice elasticity, which will be discussed in
Section V.

At the planning level, RAN resources are allocated to each
slice before its operation based on capacity and isolation
requirements. In our survey, we observed that works dealing
with RAN slicing at the planning level fall into two categories:
those applying a combined slice admission control and re-
source allocation solution and those using slice traffic/resource
demand prediction. Since ML solutions for the slice admission
control problem have been introduced in Section III-B, in this
section, we discuss relevant works that use ML for predicting
traffic/resource usage for RAN slicing.

Gutterman et al. [43] proposed a metric for a slice named
REVA, defined per QoS Class Identifier (QCI) and traffic
direction. REVA measures the resource rate (in PRBs/sec)
available for a Very Active bearer, i.e., a bearer that con-
tinuously attempts to obtain more PRBs than a maximal
fair share available. The authors then developed a prediction
model for this metric and used it for slice provisioning. The
work collected traces of RAN resource allocation from a
custom-designed experimental Long Term Evolution (LTE)
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testbed under various network usage patterns to build the
model prediction. The authors then designed a modified Long
Short Term Memory (LSTM) model to predict REVA tens
of seconds in advance. The accuracy of the LSTM was
evaluated against the Autoregressive Integrated Moving Aver-
age (ARIMA) model and traditional LSTM neural networks,
showing that the proposed model outperforms ARIMA and
LSTM by up to 31%. Finally, the authors designed a slice
provisioning algorithm that exploits the prediction models to
minimize costs for service providers.

A network slice admission control coupled with resource
allocation guided by a forecasting module that predicts net-
work slices traffic and user mobility patterns is presented
by Sciancalepore et al. [44]. In their proposal, the authors
assumed that traffic requests within a slice follow a periodic
pattern, applying time-series forecasting based on the Holt-
Winters technique to predict the aggregate traffic for every
admitted slice. The authors also employed the Self-similar
least-action human walk (SLAW) mobility model for user
mobility prediction. Using traffic generated by this model, the
authors developed a Markovian chain to capture the mobility
pattern of a user and assumed that a weighted combination
of such patterns reflects the mobility of a tenant. The authors
then employed an UL method to learn the weights of each
tenant. Next, they combined the overall load predicted by
the Holt-Winters method and the mobility model to derive
the predicted amount of resources requested by the tenant
under a BS. Finally, the authors designed a RL algorithm to
perform admission control considering the SLA of the different
tenants, their traffic usage, and user distribution. Performance
evaluation was conducted using a MATLAB simulation with
7 BSs, 10 tenants, and 100 UEs per tenant distributed uni-
formly. Results show that proper forecasting increases system
utilization, especially as the number of network slice requests
and system capacity grows.

Sapavath et al. [45] studied the Sparse Bayesian Linear
Regression (SBLR) and Support Vector Machine (SVM) tech-
niques to estimate and predict Channel State Information (CSI)
to make a decision about radio frequency slicing. The system
model was composed of infrastructure providers that sublease
their radio frequency for Mobile Virtual Network Operators
(MVNOs) based on the requests coming from MVNOs and
their SLAs. Depending on the demands and requirements,
users are classified into three user groups (stationary, mobile,
and indoor) and the infrastructure provider’s wireless resources
are allocated to MVNOs to serve the users of individual
groups. Given the end-user demands, RAN resource pool,
the number of available antennas, and the total bandwidth
of the radio frequency slices, the solution assigns wireless
resources for the slice considering the data rate of each user
of the slice. This data rate, in turn, is computed based on the
estimated CSI. The training dataset was acquired through pilot-
based training and data augmentation. Performance evaluation
focused mostly on the accuracy of the predictors and showed
that SBLR results in better outcomes than SVM, demontrating
that this technique is less sensitive to sparse CSI information.

B. VNF Placement

The TN and/or CN Slice Subnet Instantiation problem is
usually formulated as the placement of a set of VNFs towards
the underlying physical infrastructure. This approach is a
typical VNE problem reformulated to consider specific re-
quirements of the 5G system such as Random Access Memory
(RAM), CPU, disk, bandwidth, and latency constraints, as well
as node sharing. Indeed, in the VNF placement problem, given
a physical network 𝐺, representing the underlying physical
infrastructure, and a virtual network 𝐻, representing the slice,
we have to embed the virtual onto the physical network so
that each virtual node 𝑚 ∈ 𝐻 is mapped onto a physical node
in 𝐺 and each virtual link (𝑚, 𝑛) ∈ 𝐻 is mapped to a loop-
free physical path in 𝐺 connecting the two physical nodes
to which the virtual nodes 𝑚 and 𝑛 have been mapped [16].
The objective is to find an embedding with the least cost
that satisfies all link and node capacity constraints. The cost
may represent congestion, preference in terms of operator
agreements, load balancing, or real cost of operation.

The most relevant works that use ML to solve the VNF
placement problem formulate it as a Markov Decision Process
(MDP) and solve it using DRL. Yan et al. [46] proposed
a combined DRL with a neural network structure based on
graph convolutional networks to solve the VNF placement
problem. In their proposal, states are represented by eight
attributes: the number of CPU resources over all nodes, the
amount of bandwidth available in each node, the amount of
free CPU currently available in each node, the amount of
bandwidth not allocated in each node, a vector describing the
embedding for the current slice request, the number of CPU
and bandwidth resources needed by the current slice request,
and the number of unallocated virtual nodes in the current
request. To reduce the number of input features, links are
not explicitly considered in the state representation. Instead, a
Graph Convolutional Network (GCN), a Convolutional Neural
Network (CNN) used to extract features from homogeneous
graphs, is employed to automatically extract link features from
the physical network. The action taken by the RL agent is
the index of the physical node in which to place a specific
VNF of the slice. This way of modeling the actions breaks the
process of placing one slice in a sequence of VNF placements
and reduces the size of the action space to the number of
physical nodes. The reward function combines the acceptance
ratio, the placement cost, and the load balance. The solution
was evaluated through simulation using a substrate network
topology generated following the Waxman random graph.
CPU and bandwidth resources of the substrate network were
uniformly distributed between 50 and 100 units, while slice
requests were generated by a Poisson process.

Rkhami et al. [47] also employed DRL and CNNs to
improve the quality of a VNF placement heuristic. However,
different from [46], the authors in [47] used a Relational
GCN, which operates over heterogeneous graphs. The authors
only consider resource-related features (CPU and bandwidth)
to represent the system state, while the action is represented
by a binary variable used to keep the same placement of the
current VNF or to modify it based on a computed heuristic.
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The objective of the solution is to maximize the infrastructure
provider revenue. The evaluation was performed through sim-
ulation on a network topology following the Waxman random
graph. CPU and bandwidth requests are drawn uniformly, as
well as the number of VNFs in each request.

A Deep Deterministic Policy Gradient (DDPG) approach is
employed by Quang et al. [48]. Different from [46] and [47],
in [48], the state representation includes resource-related fea-
tures (CPU and bandwidth) and latency-related properties.
The action taken by the DRL agent is represented by two
sets of weights: one indicating the placement priority of each
VNF in the slice request on each physical node and the
other indicating the placement priority of each virtual link on
each physical link. The reward function of action is modeled
as the acceptance ratio. To assess the performance of the
proposed approach, the authors employed simulations using a
real-world network topology with 24 nodes and 37 links. Link
capacities are randomly chosen, the requested VNF resources
are uniformly distributed, and virtual links are arbitrarily
requested with bandwidth in the range of 1 Mbps to 40 Mbps
and latency of 1 ms to 100 ms.

Ensuring that a DRL agent converges to an optimal pol-
icy in the VNF placement problem is a challenge since its
performance depends on the exploration of a huge number
of states and actions. To overcome this problem, Esteves
et al. [49] introduced the concept of Heuristically Assisted
DRL, which combines a DRL algorithm based on Advantage
Actor-Critic (A2C) and a GCN with a Power of two Choices
heuristic to control the DRL convergence. The RL elements
of the solution (i.e., state, action, and reward) follow the
same approach in [46]. The performance evaluation is carried
out through simulation with three data center types (edge,
core, and cloud) and one slice type (eMBB). Slice requests
involve five VNFs, and arrival rates follow three network load
conditions (underload, normal load, and critical load).

Mei et al. [50] handled the VNF placement problem by
creating a VNF pool. This pool integrates all individual VNFs
distributed in the network domains, providing a variety of
network abilities to meet the requirements of Vehicle-to-
Everything (V2X) services. An Intelligent Control Layer is re-
sponsible for orchestrating the available VNF (e.g., allocating
VNFs and network resources to network slices). The solution
intends to support the deployment of VNFs on remote and
edge clouds by using Deep Q-Network (DQN) with CNNs.
The solution was evaluated through simulation with an urban
scenario based on the Manhattan grid layout and two types of
Vehicle-to-Vehicle (V2V) services: traffic safety and efficiency
service and autonomous driving-related service.

Kibalya et al. [51] tackled the multi-domain slicing as
a multi-substrate VNF problem. In their proposal, a DRL
algorithm selects the optimal set of infrastructure providers
among all the feasible candidates to maximize the revenue-to-
cost ratio for deploying the slice requests. The DRL algorithm
is based on a NN that takes as input an 𝑀 x 𝑁 feature matrix,
where 𝑀 is the number of infrastructure providers and 𝑁 is the
number of extracted features. The latter reflects the attributes
of both the slice request and substrate network. The NN was
trained offline using demands of the size of 500 requests per

epoch, with the request delay uniformly distributed between 1
to 200 units. The evaluation considered an online scenario
where the request arrival follows a Poison distribution. A
comparison with a combinatorial scheme showed that the
DRL algorithm presents a better performance, especially in
the presence of high request arrival rates.

Fantacci et al. [52] proposed an NS strategy that uses FL
to support slice allocation through VNF placement in distinct
service areas with different costs and processing and storage
capabilities. In their proposal, UEs are mapped into three
slice classes (high-rate communications; highly dynamic, low-
rate, and delay-tolerant communications; and URLLC), and
a FL framework is employed to foresee the UEs’ demand
of each service class. The goal is to use the forecast UEs’
demand to provide a VNF placement that maximizes the
infrastructure provider revenue while improving the end user’s
QoE. The FL framework applies ML models trained at the
UE level, and then a central layer aggregates to improve the
global learning model. To capture the UE request behavior, the
authors use Prospect Theory (PT). The latter aims at evaluating
a prospect (service area) defined over a set of outcomes (UE
service completion time) and the probability associated with
each of them. The proposed framework was evaluated through
simulation involving eight different areas with processing and
storage capacities, VNF types, and costs uniformly distributed.
The VNFs requests were modeled by using the MovieLens
dataset.

Panayiotou et al. [53] focused on the TN Slice Subnet
Instantiation problem. The objective is to define a transport
path considering a multi-domain network slice, which could
span many paths. In this context, the authors work on the
Quality of Transmission (QoT) estimation for sliceable optical
networks. The authors examine centralized and distributed
NN-based QoT estimation model for sliceable optical net-
works. The objective is to find QoT model(s) that are fine-
tuned to the diverse requirements of each slice. The centralized
problem is formulated as a multiclass classifier trained with
global network information while the distributed problem is
formulated as a set of binary classifiers, each of them trained
according to data that is relevant to a single type of slice. The
results show that the distributed QoT model performs better
than the centralized model, being independent of the number
of slice types. Table III summarizes the main characteristics
of the literature related to ML applied to ML problems in the
commissioning phase.

V. ML FOR NS IN THE OPERATION PHASE

The network slice operation phase requires intense manage-
ment activity in run-time. In addition to activating the network
slice instance provisioned in the commissioning phase, the
operation phase also cares about the supervision, performance
reporting, modification, and resource capacity planning [29].
Therefore, the state-of-the-art brings several ML approaches
for various network slice operation tasks. In our review, we
find out that ML is often adopted to solve the following
NS problems in the operation phase: network slice elasticity,
user admission control; traffic classification and prediction;
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TABLE III
SUMMARY OF ML-APPROACHES FOR NS PROBLEMS IN THE COMMISSIONING PHASE.

Ref. NS Learning Learning Resource Network Performance
Problem Paradigm Method Type Segment Evaluation
Radio sharing with Modified Experimental - Traces collected from[43]
traffic prediction

SL
LSTM

Network RAN
a LTE testbed

[44] Radio sharing with Time-series, Holt-Winters, Network RAN Simulation - SLAW mobility model
traffic prediction UL, and RL Customized RL algorithm
Radio sharing with[45]
traffic prediction

SL SBLR, SVM Network RAN Simulation - Pilot-based symbols

[46] VNF placement RL GCN Computing, TN, CN Simulation - Poisson distribution for
network slice requests

Computing, Simulation - Uniform distribution for[47] VNF placement RL Relational GCN
network

TN, CN
slice requests

[48] VNF placement RL DDPG Computing, TN, CN Simulation - Uniform distribution for
network slice requests

A2C, GCN, Computing, Cloud, CN,[49] VNF placement RL
heuristic network Edge

Simulation - Customized arrival rate

[50] VNF placement RL DQN, CNN Computing Cloud, Edge Simulation - Customized V2V services

Computing, Simulation - Poisson distribution for[51] VNF placement RL CNN
network

TN, CN
slice requests

[52] VNF placement FL PT Computing, CN Simulation - VNF request generated from
storage real-world dataset

Simulation - Poisson distribution for[53] Path configuration SL NN Network TN
connection request

anomaly detection, task offloading, congestion control, RAT
selection, and NS with mobility. This section details how
relevant works in the state-of-the-art tackle each problem.
Table IV summarizes the main characteristics of the literature
related to ML applied to LCM problems in the operation
phase.

A. Network Slice Elasticity

Network slice elasticity embraces run-time tasks to modify
the current slice deployed to support a user demand or appli-
cation requirement. Li et al. [54] brought solid contributions to
reviewing the background of DRL and its usage for resource
management in NS. The work follows two main scenarios: (i)
resource management for RAN; and (ii) priority scheduling
in typical VNF. Relying on DQL, the authors proposed an
approach based on allocating resources regarding the users’
activity. Such solution performed better than other intuitive
approaches, such as demand prediction, no slicing, and hard
slicing.

Qi et al. [55] presented an enhancement to the applica-
bility of DQL. The authors show how to allocate/reallocate
limited spectrum across slices by improving the calculation
and approximation of the Q-value function. The authors argue
that their approach is suitable for NS tasks, having faster con-
vergence and better performance than typical DQL. However,
they point out that there is still space for research in aspects
such as SLA assurance.

Li et al. [56] proposed an algorithm for end-to-end NS
resource allocation based on DQN. However, we fit this work
into the network slice operation phase due to its contri-
bution to slice elasticity, which assumes slice instantiation
and execution. The authors presented a framework for 5G
resource allocation, considering wireless resources on RAN

and VNF on CN. A DQN algorithm uses the feedback from
the environment dynamically and in real-time to update the
wireless resources and map the service links. Simulations
support the results in terms of access rate.

Bouzid et al. [57] demonstrated an intelligent solution for
dynamic capacity allocation in an end-to-end network slice
with multiple cloud-enabled virtualized segments for a video
replay service. A RL algorithm is used with predictive models
(trend-based and parametric methods) for state estimation.
Authors argue that the predictive models with RL can manage
the elasticity through a servicing gateway and Web servers and
cooperate to enhance the global system efficiency.

Guan et al. [58] proposed a hierarchical resource man-
agement framework that utilizes DRL to perform resource
adjustment within admitted end-to-end slices. The proposed
framework introduces 1) multiple local resource manager to
deal with the demand changes in resource requirements for an
individual slice; and 2) a global resource manager to control
the local resource managers. The local resource manager
executes a DQL algorithm, where states represent the current
service quality satisfaction, actions denote whether slice adap-
tion is required, and reward is defined as the revenue obtained
by adjusting resources minus the resource consumption cost
and operational cost. Evaluation is performed using simulation
on network and computing resources.

Indeed, because of its flexibility, dynamism, and high
applicability for large-scale problems, ML techniques apply
to the most diverse network slice elasticity issues, such as
network performance and overall resource optimization and
QoS guarantee. The vast majority of reviewed work in our
survey concentrates on this category (Table IV presents a
summary of all of them). In addition, most of these problems
sit on the RAN segment, and DRL is the most selected ML
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technique to deal with them [59]–[70], followed by supervised
learning [71]–[77]. The authors in [30] use a Deep Neural
Network (DNN) to decide on network slice reconfiguration in
a Metro-Core optical network.

B. User Admission Control

The user admission control NS problem aggregates articles
regarding challenges in deciding whether a new user, upon
request, should be added to a running network slice or not. The
difference between user admission control and slice admission
control is that, in the former, the request is for including a new
user into an instantiated and running network slice. Overall,
user admission control is a process that ponders what is being
requested vs. what is or will be available to be consumed
(e.g., bandwidth, computing, storage, and radio spectrum).
Admitting new users into a running network slice means that
the operator commits to the availability of resources (e.g.,
spectrum and bandwidth) to serve all the users hosted in the
slice.

In 5G networks, typically, user requirements may change
over time (e.g., depending on the running applications) and
a single UE may connect to up to 8 network slices simulta-
neously [78]. Therefore, ML techniques act in this decision-
making based on the time-varying user requirements, possible
resource allocation for newcomers, eventual slice elasticity,
and long-term SLA holding, for example.

Shome and Kudeshia [79] focused on the RAN and consid-
ered three different generic slice templates: mMTC, URLLC,
and eMBB. Based on a modified version of classical DQL,
users are allocated/reallocated to slices regarding their current
needs. In the literature, this type of problem is also called
Slice Selection. However, we consider it part of user admission
since the process requires aggregating new users into running
slices. In [79], the authors set up an experiment simulation
scenario with multiple MVNOs sharing virtual BS resources.
The experiment sets 30 MHz bandwidth for each virtual BS,
distributing it among 100 users. Each one of the users has
requirements fitting them in at least one of the three generic
slice templates (mMTC, URLLC, eMBB). Results show that
the authors’ proposal keeps a high average user satisfaction
score during the experiment.

Nassar and Yilmaz [80] considered a 5G scenario and
discussed the limitation of resources at the network edge,
specifically at fog nodes supporting vehicular and smart-city
networks. The NS proposal includes creating a cluster of
fog nodes with a controller, referred to as Edge Controller
(EC), responsible for efficiently managing resources. The EC
uses DRL to adapt to optimal slicing policies, performing
admission control tasks (e.g., serving or avoiding new users,
serving or avoiding specific requests) towards load balancing,
saving resources, and denying tasks better performed in the
cloud. The authors evaluate the proposal’s suitability for the
edge network using simulations.

C. Traffic classification and prediction

This category embraces works on the slice run-time using
ML techniques for traffic classification and/or prediction.

Traditionally, classifying network traffic involves three com-
mon approaches: port-based, Deep Packet Inspection (DPI),
and statistical. ML techniques are especially appropriate for
statistical approaches, which classify the traffic according to,
for example, the packets’ size and transmission direction.
Therefore, the state-of-the-art presents NS methods based on
classifying the traffic to infer running applications, predict
bandwidth, and dynamically allocate/reallocate resources.

Le et al. [81] presented early-state contributions for the
future Self-Organized Networks (SONs) NS. The authors aim
to build an architecture for NS based on mobile broadband
traffic classification. Based on past contributions working on
big data, ML, and SDN/NFV, the authors use K-means as
an UL algorithm for clustering mobile applications, resulting
in three slices (0.5Mbps, 1Mbps, 3Mbps). They also apply
several SL techniques (e.g., Naive Bayes, SVM, NN) for
classifying new coming traffic flows into the three distinct
slices.

Results show high accuracy in traffic classification and
therefore promising early-state contributions.

The authors in [82] used an FL method based on Key
Performance Indicator (KPI) data collection (e.g., network
traffic) at virtualized Central Units (CUs) to maintain dis-
tributed local datasets, referred to as Mini-Datasets. These
distributed Mini-Datasets compose the FL model for resource
allocation with long-term SLA constraints. In this context, the
authors have another complementary publication [83] focusing
on the energy efficiency perspective of their approach.

Terra et al. [84] presented an analysis of eXplainable
Artificial Intelligence (XAI) methods applied to telecommu-
nication networks. XAI methods are applied to analyze the
cause of SLA violation prediction made in 5G networks. The
proposal analyzes the explanation directly generated from the
SLA violation prediction instead of expert knowledge. Local
Interpretable Model-Agnostic Explanations (LIME), SHapely
Additive Explanations (SHAP), Permutation Importance (PI),
and Extreme Gradient Boosting (XGBoost) XAI methods are
used to analyze SLA violation prediction causes, and these
methods are further compared among them.

Salhab et al. [85] proposed a micro-service-based exper-
imental prototype with a regression tree algorithm to vali-
date the impact of forecasting capabilities on the RAN slic-
ing management. The experimental prototype, based on the
OpenAirInterface deployment, collects data while managing
several IoT devices. This data then forms a time series used
to train the regression tree. The objective is to forecast the
number of PRBs to be used by each slice to dynamically
provision the optimum slicing ratio out of the available pool
of PRBs. Results show that the forecasting model can increase
substantially the throughput of the network at the cost of
increased computing resources utilization.

D. Other Investigations

This subsection groups together relevant problems for the
network slice operation phase. However, in our research, no
substantial amount of articles discussed an ML approach to
solve them. In this sense, we present at least one publication
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approaching each problem. Refer to Table IV for a complete
list of publications regarding the operation phase.

1) Anomaly Detection: AI-assisted anomaly detection is
a classical research field in computer networks [86], [87].
Analyzing the network behavior (e.g., based on KPIs such
as packet loss and downlink delay) is a management task
during the network slice operation phase. In [88], the authors
implemented an AI-based module for assisting administrators
in detecting anomalies among services in slices deployed on a
virtualized infrastructure. The solution of the authors, aiming
to classify network traffic, has three phases: (i) pre-processing
and feature selection, (ii) clustering, and (iii) anomaly de-
tection. Data is modeled as a time series composed of the
following features: number of lost packets per service and
user, uplink and downlink delay, Reference Signal Received
Power, transfer protocol, and UE received bytes. In the second
phase, the time series is processed by a Hierarchical Density
Based Spatial Clustering (HDBSCAN) clustering algorithm,
which divides the dataset into three groups: normal, moderate,
and anomalous behavior. Such clusters are used to label the
samples in the time series. Finally, in the third phase, the
labeled dataset is used to train a feed-forward DNN to perform
a classification task. After, the DNN is used to predict anomaly
and assign a cluster to new data in real-time. Preliminary
results using the Network Simulator 3 (NS-3) discrete-event
simulator show a high accuracy score. However, increasing the
number of clusters and the algorithm granularity decreases the
prediction performance.

2) Task Offloading: The task offloading problem category
addresses articles regarding decision-making on the most
suitable domain to run a task (e.g., UE, cloud, fog). In this
sense, the authors of [89] discuss the adaptive mode selection
in Fog-RAN (F-RAN), which refers to the communication
mode serving each UE (e.g., Cloud-RAN (C-RAN), fog-radio
access point, device-to-device).

3) Congestion Control: Selected works approaching the
congestion control problem with ML fall into the scenario
of connection establishment for RAN and traffic congestion
control in general for 5G/6G wireless networks. The authors
in [90] argue that Machine-to-Machine (M2M) network traffic
may surpass Human-to-Human (H2H) in the future. However,
current approaches for dealing with M2M traffic rely on legacy
congestion control schemes, which will no longer suit the
demand in 5G and beyond scenarios. Therefore, the authors
propose an improved congestion control scheme based on RL.

4) RAT selection: Cellular networks adopting multiple
different RAT impose the well-known RAT selection chal-
lenge [97]. The article [91] presents IRIS, a shared spectrum
access architecture for indoor neutral-host small cells. IRIS
adopts a RL algorithm based on DDPG to dynamically price
the cost of a radio spectrum block in an indoor shared envi-
ronment according to the previous price, tenants (operators)
demands, acquisition costs, and neutral-host revenue target.

5) NS with Mobility: This problem category considers
works discussing scenarios with mobility in terms that the UE
is not static. To the best of our knowledge, the main concerns,
up to now (the date of this research), in the context of NS
with mobility are coverage area [93]; content caching [92];

and slice migration (e.g., UE moves out of the coverage
and needs reallocation to another slice) [95], [96]. Addad et
al. [94] propose and evaluate two DRL-based algorithms for
the intelligent selection of triggers supporting NS mobility
actions. Authors argue their approach is new by considering
users mobility, service mobility, and resource mobility among
slices for slice, service, and resource allocation. The run-time
mobility decision-making process is evaluated considering
the A2C, a hybrid DRL method combining value-based and
policy-based approaches and DQN.

VI. OPEN RESEARCH ISSUES AND FUTURE DIRECTIONS

This section identifies and discusses a non-exhaustive set
of open issues on ML for intelligent NS. The identified
challenges result from our analysis of the preparation, com-
missioning, and operation phases of the NS process, presented
in sections III, IV, and V. Moreover, we highlight the main
gaps in the literature between requirements and proposals for
intelligent NS.

A. Intelligent Translation for NS requirements

Translation of service profiles into NS requirements is
a complex task that requires low-level network slice con-
figuration parameters, such as virtual machine parameters,
network configurations, topology, and protocols [98]. With
the evolution of networks toward beyond 5G, the complexity
of this task tends to increase [99]. Consequently, an intent
layer will be required to translate service profiles into slice
requirements [100].

Intent-driven networking was conceived to enable appli-
cations to express desired operational goals using high-level
descriptive specifications known as intents [101]. Addressing
this goal, however, poses several challenges, among them,
defining rich semantics to express the intent of verticals [102].
Although the integration with AI technologies, and Natural
Language Processing (NLP) in particular, can bridge this
gap, those technologies are still at their early stage and
require further research efforts before being integrated into the
network slice LCM [100]. This research gap can be evinced
in our survey, where only one work [25] uses ML to bridge
this gap.

B. Datasets and Experiment Reproduction

High-quality datasets are essential to support the extensive
dissemination of ML in various application domains. Intelli-
gent NS, according to our research survey, is yet another area
where openly available high-quality datasets are a research
issue, regardless of the slice life cycle phase, as can be seen
in the column Performance Evolution of Tables II, III, and IV.
A directly related aspect of dataset availability is experiment
reproduction. In effect, the unavailability of datasets for most
of the research work is an obstacle to allowing experiment
reproduction and, to some extent, the explainability of the
proposed solutions and their dissemination.

In our survey, most works (e.g., in [36], [37], [38], [40],
[46] [47], [48], [49], [51], [53], [54], [55], [56], [58], among
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TABLE IV
SUMMARY OF ML-APPROACHES FOR NS PROBLEMS IN THE OPERATION PHASE.

Ref. NS Learning Learning Resource Network Performance
Problem Paradigm Method Type Segments Evaluation

[54] Slice Elasticity RL DQL Network RAN, CN Simulation
[55] Slice Elasticity RL DQL Network RAN Simulation
[56] Slice Elasticity RL DQN Network RAN, TN, CN Simulation
[57] Slice Elasticity RL QL Network RAN, TN, CN Not clear
[58] Slice Elasticity RL DQL Network, computing RAN, TN, CN Simulation
[59] Slice Elasticity RL DQN Network RAN Simulation
[60] Slice Elasticity RL DRL Network RAN Simulation
[61] Slice Elasticity RL DQL Network RAN Simulation
[62] Slice Elasticity RL DDPG Network RAN Simulation
[63] Slice Elasticity RL Duel. DNN, QL Network, computing, storage C-RAN Simulation
[64] Slice Elasticity RL DRL Network RAN Simulation
[65] Slice Elasticity RL DQN Network RAN Simulation
[66] Slice Elasticity RL DQN Network RAN Simulation
[67] Slice Elasticity RL DQN Network RAN Not clear
[68] Slice Elasticity RL LSTM, A2C DRL Network RAN Simulation
[69] Slice Elasticity RL DQL Network, computing RAN, edge Simulation
[70] Slice Elasticity RL A2C Network RAN Simulation
[71] Slice Elasticity SL DNN Network RAN, CN Real-world dataset
[72] Slice Elasticity SL LSTM Network RAN, CN Exp. & real-world dataset
[73] Slice Elasticity SL LSTM Network RAN, TN Real-world dataset
[74] Slice Elasticity SL DNN, LSTM Network RAN Simulation
[75] Slice Elasticity SL DNN Network, computing RAN Not clear
[76] Slice Elasticity SL DNN Network, computing RAN, TN Real-world dataset
[77] Slice Elasticity SL LSTM Network RAN, TN Experimental
[30] Slice Elasticity RL DNN Network TN Simulation
[79] User Adm. Control RL DQL Network RAN Simulation
[80] User Adm. Control RL DQN Network, computing RAN, edge Simulation
[81] Traffic Prediction UL, SL Naive Bayes, SVM, NN Network RAN, CN Experimental
[82] Traffic Prediction FL Non-zero sum Network RAN Real-world dataset
[84] Traffic Prediction XAI XGBoost, SHAP Network TN Experimental
[85] Traffic Prediction SL Regression Tree Network RAN Experimental
[88] Anomaly Detection UL, SL HDBSCAN, DNN Network RAN Simulation
[89] Task Offloading RL QL Network, computing RAN Simulation
[90] Congestion Control RL TRPO Network RAN Simulation
[91] RAT Selection RL DDPG Network RAN Exp. & Simulation
[92] NS Mobility RL DQN Network, computing F-RAN Simulation
[93] NS Mobility SL DNN Network RAN, edge Simulation
[94] NS Mobility RL A2C, DQN Network, computing RAN, edge Simulation
[95] NS Mobility RL A2C, LSTM Network RAN Simulation
[96] NS Mobility RL QL Network RAN Simulation

others) use data generated from simulation to evaluate their
ML solutions. However, to evaluate the effectiveness of ML
approaches when dealing with NS problems in practice, ex-
tensive evaluations are needed taking more realistic scenarios
into consideration. To this end, some works [26] [43] [72] [77]
[81] [84] [85] [91] create specific experimental testbeds for
validating their model or algorithm. Although such initiatives
are important, data collected from testbeds still misses the
representative of the complexity and dynamicity of real-world
mobile networks [103]. In addition, none of such works have
made the collected data available for the research community,
hindering and compromising the reproduction of the experi-
mental parts deployed for validation purposes. Finally, 10%
of the surveyed works [52] [71] [72] [73] [82] [76] use real-
world network data. Although such data are much richer and
more representative than those generated from simulation or
testbeds, they still may suffer from noise, sparsity, and lack of
label, which limits the ML algorithms that can be applied. In

summary, rich and adequate data is still an issue for applying
ML in NS problems.

C. Suitability of the ML Technique for the Network Slice Life
Cycle Phase

While ML is an unquestionable enable for the realization of
NS, it is impossible to find a single technique that completely
addresses the requirements of all the network slice LCM
problems. Thus, an open research issue in ML-enhanced NS
is the suitability of the ML techniques for the target network
slice life cycle phase with regard to, for example, granularity
or timing [23]. In the preparation phase, as the slice does not
exist, ML techniques using offline learning can be applied to
solve the problems of such phase. Indeed, the authors in [38]
conclude that offline training solutions for the slice admission
control problem require a training period before use but give
the best results.
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In the slice commissioning and operation phases, SL, which
usually relies on offline learning, has been usually applied
to solve traffic prediction, traffic classification, and anomaly
detection problems [43] [45] [81] [85] [88]. However, prob-
lems that involve resource allocation, such as radio resource
sharing, VNF placement, and network slice elasticity, have
to make decisions on low scale and cannot afford for a
period of training time [104]. Thus, some works [44] [57]
[89] [90] use classical RL algorithms with online training for
these problems. However, resource management in NS usually
involves multidimensional parameters, leading to a large state
space and a low convergence rate to the optimal policy [104].
In practice, this means that, until the RL algorithm converges,
it can make bad resource management decisions. Although
DRL algorithms have been used to face this limitation (e.g.,
in [46], [47], [48], [49], [50], [51], [80], [54], [55], [56], [58],
among others), DRL solutions present some shortcomings.
First, DRL algorithms usually rely on DQN to encode state.
However, an important component of DQN is a target network,
i.e., a copy of the estimated value function that is kept fixed
for some number of steps to stabilize learning [105], [106].
This copy, in turn, prevents the algorithm from reacting fast to
environment changes, a desired property of RL. More recently,
other NN algorithms (e.g., in [68]) have been investigated to
deal with this problem. Nevertheless, further investigations
are required to determine their efficacy and generalization
in the context of DRL. With this regard, TL has also been
considered a possible solution [104]. Another problem with
DRL algorithms is that NNs with multiple layers cannot
explain the essential features that influence their decisions or
the impact of data bias on the uncertainty of outputs [107].
As network slices are expected to host an increasing number
of mission-critical services in beyond 5G, trust will become
critical. Despite this need, our survey identified only one
work [84] addressing explainable ML-enhanced NS. Finally,
it is important to highlight that DRL algorithms have a high
demand for computing, memory, and energy resources [103].
Considering that beyond 5G networks will make pervasive use
of intelligence [21], DRL algorithms that make more efficient
use of computing and energy resources are still an open issue.

D. End-To-End NS

NS is applied in challenging systems such as 5G and beyond
5G, Industry 4.0/5.0, and intelligent transportation systems.
End-to-end NS is an essential requirement and current trend
for these systems. However, in most surveyed works, ML
support is focused on network segment solutions (e.g., RAN
[89], RAN + edge [80], TN [84], and RAN + CN [71], leaving
end-to-end NS as an open research issue. We consider that an
article effectively approaches end-to-end NS if it deals with
the three network segments (RAN, TN, and CN) completely.
However, this issue is not a consensus in the literature. For
example, in [77], the authors assume that the end-to-end can
start inside the RAN, crosses a TN, and finishes at the frontier
of a CN. The authors do not consider the fronthaul, i.e., part
of the RAN is not sliced, nor the CN. In our survey, only a
few works effectively tackle the end-to-end slicing problem in

the three segments (RAN, TN, and CN) [56] [57] [58], and
the first two only deal with network resources. While [58] is a
more comprehensive work considering network and computing
resources, the performance evaluation in this article is based
on a small and simplified simulation. The authors are focused
on calling attention to the importance of ML-enabled NS in
6G and the challenges in the real-world implementation.

Slicing by segment with ML support is undoubtedly rel-
evant. Nevertheless, the end-to-end design must consider
the interdependence of resource allocation and orchestration
among network segments. End-to-end intelligent slicing brings
another level of complexity, which involves issues such as the
need for a high-efficient (re)learning process and coordination
among multiple entities [58]. In this context, FL and other
distributed learning approaches may be relevant since the
works can explore the spread processing capacity offered
by edge computing and reduce the amount of information
exchange.

E. Open RAN Intelligent Slicing

RANs are a fundamental part of the slicing process in
5G networks and Open RAN (O-RAN) is one the most
relevant evolution aspect towards 6G in this segment. Not
surprisingly, O-RAN architecture has AI and ML workflows
in its design [108]. The O-RAN approach brings a new
level of flexibility for network operators allowing them to
deploy the RAN segment, potentially focusing on the business.
NS has being considered a very important capability in the
O-RAN context and has been already investigated in some
articles [109]–[111]. O-RAN slicing with ML allows efficient
RAN deployment to accomplish challenging user requirements
regarding SLA, QoE, and user mobility.

The design, implementation, deployment, and evaluation of
O-RAN with ML is a hot research topic and open research
issue. In the context of O-RAN, an ML-based solution must
be designed and implemented as a xApp and/or a rApp,
depending on their time demands. While xApps run over
a near-real-time RAN Intelligent Controller (RIC) (10ms to
1s), rApps run over a non-real-time RIC (more than 1s)
[108]. Deployment and evaluation of xApps and/or rApps
still depend on simulation (e.g., [109]), previously collected
(and so non-interactive) datasets (e.g., [110]), or limited-size
testbeds using early-stage RICs (e.g., [111]). In fact, even the
optimized deployment and operation of the RICs components
are challenging since they are a new software platform still
under development.

F. From Theory to Practice

Based on the literature presented in the previous sections,
it is clear that several theoretical works are using AI and ML,
considering the life cycle phases of NS. However, scientific
research with practical and experimental approaches to NS is
still in the beginning. As mentioned previously, most works
use only simulation for validating their proposals, while some
works focus on real-world traces or datasets, which is very
useful for ML-based approaches. However, they also face hard
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issues such as information from outdated pre-NS technologies
(LTE/4G, for instance) or data with low statistical relevance.

As expected, only few works [26] [43] [72] [77] [81] [84]
[85] [91] have already accepted the challenge of evaluating an
ML-based approach in an experimental testbed. In this con-
text, not only scientific but also technological issues become
relevant. For example, technological advances in telecommu-
nications are increasingly based on native cloud computing
platforms. Nevertheless, these platforms were not designed to
support telecommunication services natively. Indeed, in our
survey, only the work [85] has validated its proposal using a
micro-service-based RAN experimental prototype.

Pushing the frontier of science by integrating theoretical
advances in AI and ML with practical solutions for NS is an
open issue that needs further investigation and development
efforts.

VII. FINAL CONSIDERATIONS

This survey focused on presenting NS with ML research
contributions. The contributions are organized by the phases of
the slice life cycle as defined by standardization organizations
(preparation, commissioning, and operation phases), aiming to
identify trends and correlated contributions for the different
slicing phases. The contributions are concentrated in the
5G domain, with few NS solutions applied to other areas.
Specifically, in the 5G domain, the end-to-end solution is a
trend not yet fully explored, and ML is being extensively
used to provide intelligence for segmented solutions. 5G end-
to-end NS approach allows a global view of the resource
allocation problem allowing for optimizing resource sharing
aiming, for instance, to improve operation, achieve efficient
management, and optimize operational expenditure. Although
5G end-to-end slicing is essential for service providers and
telecommunications operators, the surveyed articles primarily
focus on slicing and optimizing segments like RAN and the
CN.

We have observed that ML is already being investigated
to solve several tasks in slice preparation, commissioning,
and operation. In this context, different ML techniques and
algorithms have been employed, mainly the ones popularized
in the last decades, such as CNN, GCN, LSTM, DRL, and
XGBoost. ML has exhibited satisfactory or promising results
in many automation tasks in the slice life cycle, which is
critical to provide many benefits related to the concept of
Zero touch network & Service Management (ZSM). However,
the practical and wide adoption of ML-enabled NS still faces
several challenges. Some of these challenges, such as large and
open datasets and the explainability of ML-based solutions,
are already being tackled by the academy and industry, which
can count on the experience from other areas such as computer
vision and natural language processing. However, other issues,
such as the demand for short-time for model training, energy-
efficient ML solutions, and distributed computation of ML
models, still need much investigation. AI and ML are also
evolving intensely, giving rise to new models, algorithms,
techniques, and even hardware architectures. Traditionally,
these novelties are not designed or tested first in networking.

However, they must be imported and sometimes adapted in
NS, for example.

Finally, we highlight the availability of various multi-
technology (SDN, wireless, IoT, slicing, and others) testbeds
worldwide for experimental research development. These
testbeds, in most cases, inherently facilitate experiment repro-
duction using openly available software to control the exper-
iment and having the ability to create experimental datasets.
An essential point for researchers would be to evaluate to what
extent these testbeds can be used for developing and validating
research results in intelligent NS.
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