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Robust Optimal Control for Demand Side
Management of Multi-Carrier Microgrids

Raffaele Carli1, Member, IEEE, Graziana Cavone1, Member, IEEE, Tomás Pippia2,
Bart De Schutter2, Fellow, IEEE, and Mariagrazia Dotoli1, Senior Member, IEEE

Abstract—This paper focuses on the control of microgrids
where both gas and electricity are provided to the final customer,
i.e., multi-carrier microgrids. Hence, these microgrids include
thermal and electrical loads, renewable energy sources, energy
storage systems, heat pumps, and combined heat and power
units. The parameters characterizing the multi-carrier microgrid
are subject to several disturbances, such as fluctuations in the
provision of renewable energy, variability in the electrical and
thermal demand, and uncertainties in the electricity and gas
pricing. With the aim of accounting for the data uncertainties
in the microgrid, we propose a Robust Model Predictive Control
(RMPC) approach whose goal is to minimize the total economical
cost, while satisfying comfort and energy requests of the final
users. In the related literature various RMPC approaches have
been proposed, focusing either on electrical or on thermal
microgrids. Only a few contributions have addressed the robust
control of multi-carrier microgrids. Consequently, we propose
an innovative RMPC algorithm that employs on an uncertainty
set-based method and that can provide better performance
compared with deterministic model predictive controllers applied
to multi-carrier microgrids. With the aim of mitigating the
conservativeness of the approach, we define suitable robustness
factors and we investigate the effects of such factors on the
robustness of the solution against variations of the uncertain
parameters. We show the effectiveness of the proposed RMPC
approach by applying it to a realistic residential multi-carrier
microgrid and comparing the obtained results with the ones of
a baseline robust method.

Note to Practitioners—This work is motivated by the emerging
need for effective energy management approaches in multi-
carrier microgrids. The inherent difficulty of scheduling si-
multaneously the operations of various energy infrastructures
(e.g., electricity, natural gas) is exacerbated by the inevitable
presence of uncertainties that affect the inter-dependent dynamics
of different energy resources and equipment. The proposed
robust MPC-based control strategy allows the energy manager
to effectively determine an optimal energy scheduling of multi-
faceted system components, making a tradeoff between perfor-
mance and protection against data uncertainty. The presented
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strategy is comprehensive and generic, as it can be applied
to different microgrid frameworks integrating various types of
system components and sources of uncertainty, while at the same
time being implementable in any energy management system.

Index Terms—Energy and environment-aware automation,
demand side management (DSM), multi-carrier microgrid, set-
based uncertainty, robust optimization; robust model predictive
control.

I. INTRODUCTION

We are currently facing an energy transition worldwide
that has led to several changes in energy networks [1]. Due
to technological advancements, governmental policies, and
a larger share of renewables, electrical and thermal energy
grids are changing, facilitating the introduction of new energy
paradigms but at the same time creating many challenges.
One of such paradigms is the introduction of microgrids,
which, albeit an old concept, provide many benefits to the
electrical grids [2]. Microgrids are energy grids of small size,
including local production of energy, consumption, energy
storage systems, a control architecture, and a connection to
the main grid [3], [4]. Some of the benefits of microgrids
are: increased efficiency, because the energy locally produced
is also consumed locally, thus wasting less energy in trans-
portation; higher resiliency, because the failure of a single
microgrid does not compromise the stability of the whole grid;
a modular structure, which allows more flexibility, so that each
microgrid is adapted to the local characteristics of the region
where it is located, e.g., renewable energy production from
the sun or wind, or both. However, the introduction of a larger
share of renewable energy into the grid, together with a higher
amount of energy storage and variable electricity prices, which
typically characterize microgrids, adds a layer of uncertainty
that leaves many open challenges [5], [6].

In fact, in microgrid energy management problems, the main
goal is to minimize an economical objective while providing
good performance for other goals, e.g., minimizing the amount
of energy exchanged with the main grid to avoid penalties
as in [7], or the discomfort of occupants in a building [8].
Among several control algorithms presented in the literature,
Model Predictive Control (MPC) [9], [10] stands out as one
of the most suitable and flexible control approaches for the
problem to face. MPC is a model-based, optimization-based
control approach that allows including several objectives and
constraints in the formulation of the control problem. In the
standard deterministic MPC (Det-MPC) form, the unknown
disturbances, e.g., electrical loads, renewable generation, are
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simply forecast with a point forecasting method. Given that
the actual value of these perturbations can be quite different
from the forecast itself, this can lead to poor performance.

To cope with this issue, two different MPC approaches
have been developed, namely stochastic and robust MPC
(RMPC) [10]. On the one hand, in stochastic MPC, as the
name mentions, the stochastic properties of the disturbances
are exploited and used in such a way that the constraints of
the problem are not satisfied for every possible disturbance
realization but only for a subset of them. Such a strategy works
better when there is a large amount of prior data available and
the stochastic properties of the disturbances can be assumed
to be known. On the other hand, RMPC generally satisfies the
constraints of the problem for every possible realization of
the disturbances. The only information needed in such a case
is the disturbance bounds, which can be computed or esti-
mated for a large variety of practical applications. Clearly, the
choice of either method depends on the specific application.
Where it is not vital to guarantee constraint satisfaction at all
times, e.g., for building heating control [8], [11], a stochastic
approach results in the best choice, to avoid a possibly too
conservative control action. Conversely, when a small amount
of information is available on the disturbances, an RMPC
approach is the most suitable choice. This also applies to
cases in which it is necessary to guarantee at all times a
maximum amount of power exchanged with the main grid
[12]. In addition, the robust approach has significantly higher
computational performance and the corresponding uncertainty
modeling is simpler than the stochastic approach [13]. For
the above reasons, in this paper we focus on RMPC, and
specifically on a robust control approach that can guarantee
an adequate constraint satisfaction while not overly affecting
the optimality of the resulting control strategies.

A. Related works

In the last years, many works have considered applications
of MPC to microgrids [12], [14]–[27]. These works devote
their attention either to multi-carrier microgrids [12], [16]–
[22], to fully thermal microgrids [15], or to fully electrical
microgrids [14], [23]–[27]. The article [14] presents a mod-
eling framework for electrical microgrid energy management
systems. Similarly, paper [15] presents a thermal microgrid
modeling framework and a Det-MPC approach, considering
district heating, thermal energy storage, and flexible loads.
MPC algorithms for multi-carrier microgrids have been pro-
posed in [12], [16]–[19], [22]. The article [16] discusses a
stochastic MPC approach for microgrids that contain both
thermal and electrical units. The control approach uses a two-
stage optimization strategy: in the first stage, a decision on the
microgrid operations is made before the values of the external
disturbances are known; in the second stage, after the values
of the random variables become known, correction actions are
taken. The authors of [17] develop an MPC approach for a
multi-carrier energy management system of a microgrid. Sta-
bility of the controlled system is proven, although the resulting
controller is deterministic and does not take disturbances into
account. Paper [18] considers a demand response framework,

also within the context of Det-MPC. In [19], similarly to [16],
a two-stage MPC controller for mixed-energy microgrids is
presented, where, however, the first stage controller consists
of a stochastic MPC algorithm while the second stage is a
rule-based one. Similarly to [16], a two-stage optimization
procedure is proposed in [22] for multi-carrier microgrids. In
the first stage, a day-ahead scheduling is performed, while in
the second stage corrective actions are taken with a shrinking
receding horizon approach. The resulting MPC controller is
deterministic, as disturbances are simply point-forecasts.

With respect to RMPC, some applications to microgrids
have been considered [12], [22]–[26]. The authors of [23]
present a min-max RMPC approach for fuel-cell cars inside a
microgrid. Such vehicles can be used as a power generating
unit when they are parked inside the microgrid and not being
used. In [24], an economic RMPC controller is presented.
Constraints related to the operational limits of the components
of the microgrid and on the energy balance are included in
the controller, considering variations of the expected loads
and using a constraint tightening strategy. The constraints on
the states and inputs are tightened and the resulting control
law guarantees convergence to a neighborhood of a robust
optimal trajectory that minimizes the cost function. In [25] an
RMPC method, which has three types of uncertainty scenarios
and uncertainty budgets for islanded microgrids, is presented.
In [27], a hierarchical controller is presented, in which the
lower level comprises a rule-based controller while the upper
level consists of an RMPC controller that considers a robust
optimization over a control policy parameterized by gains and
that is able to compensate uncertainties on predictions of loads,
which are modeled based on fuzzy intervals. The authors
of [26] consider an RMPC approach for islanded electrical
microgrids, where the “degree of uncertainty” method of
[28] is used. Such a method provides a trade-off between
robustness and conservatism of the controller. In [12], an
RMPC approach for multi-carrier microgrids is considered,
with a focus on a demand response program of the United
Kingdom national grid. The goal of such a program is to add
some extra flexibility to the energy grid and make the supply
of energy more secure; the prosumer that provides flexibility is
rewarded economically for the commitment to supply energy.
A nonlinear economical MPC approach is presented in [22].
The authors focus on the control of combined-heat-and-power
plant that provides electrical and thermal energy to a district
and they assume the existence of a thermal market. To improve
the robustness of the controller, a simple approach is adopted,
in which three different scenarios are forecast, i.e. expected
and upper and lower extreme scenario. Then, a weighted
sum of the cost function, for the three scenarios, is used as
objective.

B. Contributions

It can be noted from the previous literature review that,
among the papers that present an RMPC algorithm, i.e., [12],
[22]–[26], almost all of them actually consider only a fully
electrical microgrid that does not include any thermal device.
The papers that do consider a multi-carrier microgrid, i.e.
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[12], [22], have a limited scope. In fact, [12] focuses on the
short-term operating reserve in the national context of the
United Kingdom, while [22] considers a single device, i.e. a
combined-heat-and-power plant, and it assumes the presence
of a thermal power exchange grid.

Therefore, to the best of the authors’ knowledge, little or
no attention has been devoted in the literature to RMPC algo-
rithms for microgrids that consider both electricity and heating
devices. Most of the works focus either on an RMPC strategy
for single-carrier microgrids or on a multi-carrier microgrid
with a Det-MPC algorithm. However, heating systems are be-
coming increasingly important, as more and more devices that
couple the heating demand with the electrical one are installed
in buildings, e.g. heat pumps (HPs), micro combined-heat-
and-power plants (µ-CHPs). Moreover, as mentioned earlier,
the large amount of uncertainties in the microgrid, related to
energy demand and supply, results in the need for adopting an
RMPC strategy.

Therefore, in this work we address the robust energy
management system problem of a multi-carrier microgrid that
includes both electrical and thermal devices. In particular, on
the heating side, we consider HPs, µ-CHPs, controllable ther-
mal loads (CTLs), non-controllable thermal loads (NCTLs),
thermal energy storage systems (TESSs), and auxiliary boilers,
while on the electrical side we consider non-controllable
electrical loads (NCELs), controllable electrical loads (CELs),
electrical energy storage systems (EESSs), and renewable
energy sources (RESs). Moreover, we develop a novel RMPC
algorithm that provides improved performance with respect to
Det-MPC algorithms present in the current literature. In order
to achieve such a result, we adopt the cardinality-uncertainty-
set robust optimization method proposed in [28], in which
the so-called budgets of uncertainty are employed to control
the degree of conservatism and robustness of the solution.
We manage to achieve constraint satisfaction successfully
even with large disturbances affecting both the demand and
supply of energy within the electrical and thermal parts of
the microgrid, as shown in the simulation results. Lastly,
while we recently published a conference paper [20] with
preliminary results, the current work significantly extends and
improves the method in several aspects: 1) we extend the
proposed microgrid model in order to integrate also further
important components, e.g. controllable thermal loads; 2) we
consider and model further sources of uncertainty acting in
the microgrid, e.g. electricity and gas pricing; 3) we adopt the
cardinality-set-uncertainty to define the uncertainty space for
the online robust optimization; 4) we thoroughly compare the
results achieved by the novel proposed method with a related
robust approach.

Our contribution is therefore threefold:

• we present a novel mathematical model and a compre-
hensive RMPC methodology to optimally control the
energy exchange of a multi-carrier microgrid equipped
with both thermal and electrical units, namely thermal
loads, electrical loads, renewable energy sources, energy
storage systems, heat pumps, and combined heat and
power units.

• we take into account the data uncertainty associated with
electrical and thermal energy demand, RES generation,
and electricity and natural gas coefficients in the micro-
grid by formulating a computationally tractable robust
counterpart of the online energy scheduling problem
based on an uncertainty set-based method of [28].

• we define several suitable robustness factors to miti-
gate and reduce the conservativeness of the proposed
approach. Moreover, we investigate the effects of such
factors on the robustness of the solution against variations
of the uncertain parameters within the given uncertainty
sets.

C. Outline

The outline of the article remainder is as follows. In Section
II, we discuss the system model. Section III is focused on
the Det-MPC formulation. We present the RMPC energy
scheduling approach in Section IV, highlighting the difference
with respect to the deterministic approach and the definition
of data uncertainty set. Section V is devoted to numerical
experiments, showing the effectiveness of the proposed robust
control scheme and comparing the achieved results with a
related robust approach. Lastly, conclusions and remarks for
future work are presented in Section VI.

II. MODEL OF THE MULTI-CARRIER MICROGRID

The multi-carrier microgrid reported in this section is based
on the model shown in Fig. 1. The main electrical grid can
supply energy to CELs, NCELs, and HP (or to CELs, NCELs,
HP, and EESS), while it can receive energy from RES, EESS,
and CHP (or RES and CHP). Consequently, the system can
both buy and sell energy to the main grid. The electrical
demands can be fulfilled by the main electrical grid, RES,
CHP, and EESS. On the other hand, the gas network can
supply the CHP and the boiler, while it cannot receive gas
from the microgrid. The thermal energy produced by CHP,
boiler, and HP (or by CHP, boiler, HP, and TESS) can be
provided to the NCTL, CTL, and TESS (or to NCTL, CTL).

We remark that the considered microgrid architecture in
Fig. 1 is quite general and represents the majority of practically
employed multi-carrier microgrids. Specifically, the scheme
in Fig. 1 does not represent the actual topology of the gas
and the electrical grid (which incorporates several buses),
but rather it constitutes a high-level conceptual model of the
addressed microgrid, aimed at synthetically showing the main
inflows/outflows of the considered components.

In the sequel we consider a control horizon [k+1, k+H]
containing H equally spaced time slots and moving ahead at
each current time slot k.

A. Notation

Let N,R,Z+,Rn,Rn×m denote the set of natural numbers,
the set of real numbers, the set of non-negative integers, the set
of column real vectors of length n and the set of n by m real
matrices, respectively. The transpose of a matrix A ∈ Rn×m is
denoted by A>, while 1n and 0n denotes a column vector of
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Fig. 1. High-level scheme of the multi-carrier microgrid illustrating the
considered components and the corresponding inflows and outflows.

n elements all being equal to 1 and 0, respectively. ◦ denotes
the entry-wise product between two equal size vectors. b·c
denotes the ceiling operator: given the real number a, bac is
the greatest integer lower than or equal to a. For any k1, k2 ∈ N
with k1 ≤ k2, the finite set of integers {k1, ..., k2} is denoted
by N[k1,k2]. For any w1, w2 ∈ Z+ with w1 ≤ w2, [w1, w2]
denotes the closed interval {w ∈ Z+ | w1 ≤ w ≤ w2}. The
vector a(k) = [a(k+ 1), . . . , a(k+H)]> represents a column
vector of H values over the time horizon [k+1, k+H]. Lastly,
col(an)n∈N[1,N]

is equal to (a>1 , . . . ,a
>
N )>.

B. Electrical Loads

The microgrid includes some NCELs for which the elec-
trical demand cannot be shifted in time and regulated. At
each time step k ∈ Z+ let b(k) be a column vector of input
parameters representing the energy consumption profile of the
NCELs over the time horizon [k+1, k+H]. Moreover, the grid
comprises N cel CELs that allow for operations’ regulation and
programming. The decision variables representing the energy
consumption of each CEL over the time horizon [k+1, k+H]
is represented by the column vector xel

n (k) with n ∈ N[1,Ncel].
We collect the profiles of all CELs in the column vector
xel(k) := col(xel

n (k))n∈N
[1,Ncel]

.
Differently from NCELs, CELs are required to work in

bounded operating intervals limited by minimum and maxi-
mum operating levels. The maximum and the minimum energy
levels for each CEL are respectively represented by the input
parameters vectors ln(k) and ln(k). Moreover, each n CEL
must consume a well-defined quantity of energy Ln(k) over
the considered time horizon. The defined requirements can be
summarized by the following constraints:

ln(k) ≤ xel
n (k) ≤ ln(k), n ∈ N[1,Ncel] (1)

1H
>xel

n (k) = Ln(k), n ∈ N[1,Ncel]. (2)

C. Thermal Loads

Similarly to electrical loads, thermal loads are distinguished
into NCTLs and CTLs, and take into account the thermal
demand, e.g., for heating space and water. As regards NCTLs,

e.g., the thermal demand for heating water, the consumption
profile over the time horizon [k+ 1, k+H] is represented by
a vector of input parameters q(k). Differently, the M ctl CTLs
consumption profiles, which can be programmed and shifted
over time, e.g., the space heating/cooling, is defined as a col-
umn vector of decision variables yctl

m (k) with m ∈ N[1,Mctl].
CTLs are requested to work fulfilling comfort requirements in
a bounded interval limited by minimum and maximum thermal
levels. In particular, the maximum and minimum temperature
profiles for each CTL are respectively represented as Tm(k)
and Tm(k). A CTL is formalized as first order dynamic
system function of the temperature of the environment and
of the related decision variables. The defined assumptions can
be formulated as follows:

Tm(k) ≤ Tm(k) ≤ Tm(k),m ∈ N[1,Mctl] (3)

Tm(k) = e−
∆h
τ Tm(k − 1)+ (4)

+ (1− e−∆h
τ )(Te(k − 1) + αyctl

m (k))

where ∆h is the sampling time of the time horizon [k+1, k+
H], τ is the constant time of the first-order dynamics of the
environment temperature, α is the temperature gain of the heat
exchanger, Te(k − 1) is the external temperature profile, and
yctl
m (k) is the decision variables vector related to the m-th

CTL. We collect the profiles of all CTELs in the column vector
yctl(k) := col(yctl

m (k))m∈N
[1,Mctl]

.

D. Renewable Energy Source
The microgrid under analysis includes a RES, which can

be for instance a wind turbine for residential use and/or
a photovoltaic panel. The corresponding energy generation
profile over the horizon [k + 1, k + H] is represented by the
column vector r(k).

E. Heat Pump
Various HPs can be used to accommodate the space heating

and hot water demand. However, in this work we refer to
air-to-water source HPs in heating mode only. In fact, such
systems can be easily installed as a convenient retrofit solution
in existing facilities, thus providing thermal energy for both
space heating and hot water services [29]. The efficiency of
the heat pump is measured by the so-called Coefficient of
Performance (COP) that depends on the internal temperature
of the residential unit and on the thermal gap between the
internal and external temperature of the residential unit. The
COP is here considered to assume a constant value over the
horizon [30], [31]. The COP – denoted as ηhp – relates the
input electrical energy vector xhp(k) and the output thermal
energy vector yhp(k) as follows:

yhp(k) = ηhp xhp(k). (5)

Operational requirements impose to limit the thermal energy
between minimum and maximum values php and php as
follows:

php1H ≤ yhp(k) ≤ php1H . (6)
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In addition, further constraints are imposed to limit the ramp
up and ramp down of the HP generation in accordance with
the upward and downward ramp rates ρhp and ρhp:

ρhp≤yhp(h)−yhp(h−1)≤ρhp,∀h∈ [k+1, k+H]. (7)

F. Gas Boiler

Auxiliary boilers are usually used in microgrids in order to
meet thermal demand peaks that cannot be satisfied by the
CHP, HP, or TESS. In particular, gas-fired boilers are widely
installed in facilities connected to the gas main grid and they
are used to satisfy the heating demand when no decentralized
power generation is available. The microgrid under analysis
comprises a gas-fired boiler, which presents an efficiency
ratio ηboi around 100% during the burning process and can
rapidly satisfy changes in the hot water demand thanks to its
fast dynamics. The efficiency ratio ηboi relates the input gas
amount vector zboi(k) and the output thermal energy vector
yboi(k) as follows:

yboi(k) = ηboizboi(k). (8)

Operational requirements impose to limit the thermal energy
generated by the gas boiler between minimum and maximum
values pboi and pboi as follows:

pboi1H ≤ yboi(k) ≤ pboi1H . (9)

G. Combined Heat and Power Unit

The microgrid comprises also a CHP unit that can generate
both thermal and electrical energy using a single source of fuel.
Complete CHP systems are usually deployed as a combination
of a prime mover CHP technology, a TESS, and an auxiliary
boiler. The profitability of CHPs system depends on the choice
of the prime mover technology and size, and on the design
of the combined TESS [32]. The high interdependence of
the electrical and thermal energy generated by CHP can be
modeled as reported below:

xchp(k) = ηchpe zchp(k) (10)

ychp(k) = ηchpt zchp(k). (11)

The gas consumed by the CHP is represented by the input
column vector zchp(k), while the generated electrical and
thermal energy are the output column vectors xchp(k) and
ychp(k). Consequently the CHP presents both an electrical
and a thermal efficiency respectively represented by ηchpe and
ηchpt , which are here assumed to be constant over the horizon
[33], [34]. Operational requirements on the CHP unit impose
to limit the generated electrical and thermal energy between
minimum and maximum values lchp, l

chp
, pchp, and pchp:

lchp1H ≤ xchp(k) ≤ lchp1H (12)
pchp1H ≤ ychp(k) ≤ pchp1H . (13)

In addition, further constraints are imposed to limit the ramp
up and ramp down for both the thermal and electrical gen-
eration of the CHP unit in accordance with the upward and

downward ramp electrical rates rchp and rchp and thermal
rates ρchp and ρchp:

−rchp≤xchp(h)−xchp(h−1)≤rchp,∀h∈ [k+1,k+H] (14)
−ρchp≤ychp(h)−ychp(h−1)≤ρchp,∀h∈ [k+1,k+H].(15)

H. Electrical Energy Storage System

The EESS can both provide and absorb electrical energy
to and from the microgrid. Consequently, we consider two
different vectors xes

−(k) and xes
+(k) to represent the dis-

charging and charging activities of the EESS over the time
horizon. The EESS is here represented as a first-order dynamic
system whose charge level, given the charging and discharging
efficiencies ηes+ and ηes− , can be modeled as follows:

ses(h) = ses(h− 1) + ηes+x
es
+(h)− 1

ηes−
xes−(h),

∀h∈ [k+1, k+H]. (16)

The charge level is limited by the minimum and maximum
EESS capacity Ses and S

es
:

Ses − ses(h− 1) ≤ ηes+xes+(h)− 1

ηes−
xes−(h)

≤ Ses − ses(h− 1) ,∀h∈ [k+1, k+H]. (17)

To represent the mutual exclusion of the charging/discharging
events, i.e., the electrical energy can flow from the microgrid
to the EESS and vice versa but not simultaneously, the model
includes the following constraints:

0H ≤ xes
+(k) ≤ δes+(k)ses (18)

0H ≤ xes
−(k) ≤ δes−(k)ses (19)

δes+(k) ∈ {0, 1}H , δes−(k) ∈ {0, 1}H (20)
δes+(k) + δes−(k) ≤ 1H (21)

where ses and ses are the maximum charging and discharging
rates, while δes+(k) and δes−(k) are two supporting vectors over
the time horizon [k+1, k+H].

We highlight that δes+ (h) = 1 or δes+ (h) = 0 if the EESS is
charged or is not charged at time step h, respectively; similarly,
it holds δes− (h) = 1 or δes− (h) = 0 if the EESS is discharged
or is not discharged at time step h, respectively.

I. Thermal Energy Storage System

The TESS is modeled similarly to the EESS, thus we con-
sider vectors yts

+(k) and yts
−(k) respectively representing the

decision variables related to the energy storage end provision.
The charge level at time step k is represented as sts(k) and
the constraints below are imposed:

sts(h)=sts(h− 1) + ηts+y
ts
+(h)− 1

ηts−
yts−(h),

∀h∈ [k+1, k+H] (22)

Sts − sts(h− 1) ≤ ηts+yts+(h)− 1

ηts−
yts−(h)

≤ Sts − sts(h− 1) ,∀h∈ [k+1, k+H] (23)
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0H ≤ yts
+(k) ≤ δts+(k)sts (24)

0H ≤ yts
−(k) ≤ δts−(k)sts (25)

δts+(k)∈{0, 1}H , δts−(k)∈{0, 1}H (26)

δts+(k) + δts−(k) ≤ 1H (27)

where ηts+ and ηts− are the charging and discharging efficiencies,
Sts and S

ts
are the minimum and maximum capacities, sts

and sts are the maximum charging and discharging rates, and
δts+(k) and δts−(k) are two vectors of supporting variables with
an analogous meaning as in the EESS case.

J. Electrical and Thermal Demand-Supply Balance

In presence of CHP units, microgrids deal also with the
exchanged thermal energy flows. Hence, for the sake of
satisfying the energy balance in the multi-carrier scenario,
a demand-supply balance constraint must be imposed at any
time slot for both the electrical and thermal energy flows.

Specifically, the local balance of the electrical energy flow
over the time horizon is expressed through the following
equation:

xgr(k)+xchp(k)+xes
−(k)+r(k) =

Nel∑
n=1

xel
n (k)+xhp(k)+xes

+(k)+b(k) (28)

where xgr(k) is a column vector denoting the profile of the
electricity exchanged between the main grid and the microgrid
and sold over the time horizon: for each at time step we have
that h ∈ [k+1, k+H] xgr(h) ≥ 0 if the microgrid buys energy
from the grid, whilst xgr(k) < 0 if the microgrid sells energy
to the grid.

The balance equation (28) can be rewritten more compactly
as follows:

xgr(k) = xa(k)+d(k) (29)

where we denote the net electrical demand as d(k) := b(k)−
r(k) and we introduce the supporting variables vector xa(k)
defined as:

xa(k)=
Nel∑
n=1

xel
n (k)+xhp(k)+xes

+(k)−xchp(k)−xes
−(k). (30)

Similarly, for the local balance of the thermal energy flow
over the time horizon we have:

yboi(k)+ychp(k)+yhp(k)+yts
−(k) =

Mctl∑
m=1

yctl
m (k)+yts

+(k)+q(k). (31)

The balance equation (31) can be rewritten more compactly
as follows:

yboi(k) = ya(k)+q(k) (32)

where we introduce the supporting variables vector ya(k)
defined as:

ya(k)=

Mctl∑
m=1

yctl
m(k)+yts

+(k)−ychp(k)−yhp(k)−yts
−(k). (33)

K. Electricity and Gas Pricing and Contractual Constraints

A contractual obligation restricts the energy that the mi-
crogrid can buy from and sell to the electricity provider at
each time slot. Denoting the maximum purchasable and salable
energy profile imposed by the power grid over the time horizon
respectively as column vectors e(k) and e(k), the following
constraints must be satified:

e(k) ≤ xgr(k) ≤ e(k). (34)

The pricing function for the electricity exchanged with the
power grid is assumed to be linear [21], [34] but different
unit prices are considered. In particular, the buying and selling
pricing coefficients over the time horizon are collected into two
different vectors denotes as κ+(k) and κ−(k), respectively.
The electricity cost incurred by the microgrid at time slot h
is thus defined as:{

κ+(h)>xgr(h), if xgr(h) ≥ 0
κ−(h)>xgr(h), if xgr(h) < 0

,∀h∈ [k+1, k+H]. (35)

Equation (35) can be transformed in a linear form using
logic constraints as indicated in [35]. To this aim, denoting the
vector collecting the logical variables over the time horizon as
δg(k), we introduce the following logical constraints:

xgr(k) ≥ 0H ⇐⇒ δg(k) = 0H (36)

and the following supporting variables:

xgδ(k) = δg(k) ◦ xgr(k). (37)

Using the above defined supporting variables, (35) can be
straightforwardly rewritten as follows:

cgr
(
xgr(k),xgδ(k)

)
= (38)

κ+(k)>xgr(k)− κ+(k)>xgδ(k) + κ−(k)>xgδ(k).

Replacing (30) in (38) we get:

cgr
(
xa(k),xgδ(k)

)
= (39)

κ+(k)>(xa(k)+d(k))−κ+(k)>xgδ(k)+κ−(k)>xgδ(k).

Following [35], (36) and (37) can be replaced with:

xgr(k) ≤ e(k) ◦ (1H − δg(k)) (40)
xgr(k) ≥ e(k) ◦ δg(k) (41)

xgδ(k) ≤ xgr(k)− e(k) ◦ (1H − δg(k)) (42)
xgδ(k) ≥ xgr(k)− e(k) ◦ (1H − δg(k)) (43)

xgδ(k) ≤ e(k) ◦ δg(k) (44)
xgδ(k) ≥ e(k) ◦ δg(k). (45)

Finally, the pricing function for the natural gas bought from
the main grid is assumed to be linear [21], [34]. Denoting
the vector of gas pricing coefficients over the time horizon
as ν(k), the cumulative gas cost incurred by the microgrid is
thus:

cgas
(
zboi(k), zchp(k)

)
= ν(k)>

(
zboi(k) + zchp(k)

)
. (46)

A contractual obligation imposed by the gas provider re-
stricts the quantity of natural gas that could be bought by the
microgrid. Specifically, denoting the maximum purchasable
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gas amount over the time horizon as column vector d(k), the
following constraints must hold:

0H ≤ zboi(k) + zchp(k) ≤ g(k). (47)

III. DETERMINISTIC FORMULATION OF THE ENERGY
SCHEDULING PROBLEM

In the deterministic approach, all the parameters are as-
sumed unaffected by uncertainty. Specifically, the energy
scheduling problem is formulated using the nominal forecasted
values of electrical and thermal energy demand, RES genera-
tion, and electricity and natural gas coefficients.

The objective function aims at minimizing both the elec-
tricity and the gas cost defined in (39) and (46), respectively.
Specifically, ignoring the constants, the sum of the terms in
(39) and (46) can be compactly written as follows:

κ+(k)>xa(k)+(κ−(k)− κ+(k))>xgδ(k)

+ν(k)>zboi(k) + ν(k)>zchp(k)=π(k)>ξ(k) (48)

where we introduce the linear coefficients vector π(k) :=(
κ+(k)>, (κ−(k)−κ+(k))>,ν(k)>,ν(k)>

)>
and the vari-

ables vector ξ(k) :=
(
xa(k)>,xgδ(k), zboi(k)>, zchp(k)>

)>
.

The deterministic or nominal energy scheduling problem
consists in determining the cost-optimal operation of the
microgrid components over the time horizon [k+ 1, k+H]
such as the electricity consumption profile of CELs and HP,
the amount of electricity to be bought from and sold to the
power grid, the thermal energy consumption profile of TELs,
the amount of natural gas to be bought for the CHP unit
and the boiler, and the EESS and TESS charging/discharging
strategy:

min
xgr(k), xgδ(k), xa(k), xel(k), xhp(k), xchp(k),

xes
+(k), xes

−(k), y
ctl(k),T(k), ychp(k), yboi(k),

ya(k), yts
+(k), y

ts
−(k), z

boi(k), zchp(k),

δes
+(k), δes

−(k), δ
ts
+(k), δ

ts
−(k), δ

g(k)

(
π(k)>ξ(k)

)

s.t. (1)-(27), (29)-(30), (32)-(34), (40)-(45), (47). (49)

For the sake of simplifying (49) and omitting superfluous
terms, we transform (49) as follows:

min
xgδ(k), xa(k), xel(k), xhp(k), xchp(k),

xes
+(k), xes

−(k), y
ctl(k),T(k), ychp(k), yboi(k),

ya(k), yts
+(k), y

ts
−(k), z

boi(k), zchp(k),

δes
+(k), δes

−(k), δ
ts
+(k), δ

ts
−(k), δ

g(k)

(
π(k)>ξ(k)

)

s.t. (1)-(27), (30), (32)-(33), and (50)

xa(k)+d(k) ≤ e(k) ◦ (1H − δg(k)) (51)
xa(k)+d(k) ≥ e(k) ◦ δg(k) (52)

xgδ(k) ≤ xa(k)+d(k)− e(k) ◦ (1H − δg(k)) (53)
xgδ(k) ≥ xa(k)+d(k)− e(k) ◦ (1H − δg(k)) (54)

e(k) ≤ xa(k)+d(k) (55)
xa(k)+d(k) ≤ e(k) (56)

ya(k) + ηboizchp(k) + q(k) ≤ ηboig(k) (57)
ya(k) + ηboizchp(k) + q(k) ≥ 0H . (58)

Note that equations (51)-(54) and (55)-(56) are obtained by
replacing (29) in (40)-(43) and (34), respectively. Similarly,
equations (57)-(58) are obtained replacing (32) and (11) in
(47).

In particular, (50)–(58) is a mixed integer linear program-
ming (MILP) problem that consists in determining H(N+M+
14) real and 5H binary decision variables, which minimize the
objective function in (50), and meet 2H(N+M+14) bounding
constraints, (HM + N + 8H) equality constraints, 24H
inequality constraints, and H(N + 2) integrality constraints.

The optimization problem (50)–(58) is iteratively solved
at each time slot k based on the most recent input data in
accordance with the rolling horizon concept, thus defining the
deterministic MPC approach. The results related to the first
time slot are implemented in the microgrid as the optimal
control signals. Subsequently, the horizon is shifted ahead at
the next time slot: a new optimization problem is solved using
the updated input data.

IV. ROBUST FORMULATION OF THE ENERGY SCHEDULING
PROBLEM

The variation in the forecast of thermal energy demand,
electrical demand, RES generation, and electricity and gas
pricing coefficients (i.e., of vectors q, b, b, κ+, κ−, and ν)
may lead the deterministic scheduling to ineffective results,
i.e., microgrid strategies that are suboptimal and even unfea-
sible. Differently from the previous deterministic scheduling
approach, where unrealistically no perturbation is assumed
to influence the nominal values, in this section we tackle
uncertainty in the energy scheduling by defining a compu-
tationally tractable method able to determine robust solutions.
In the first stage of the proposed method, a data set is
selected within the uncertainty space, defining the so-called
uncertainty set. In the second stage, the optimal solution that
is feasible for any realization of uncertain parameters within
the defined uncertainty set is computed. The optimization
problem in the second stage is referred as robust counterpart
optimization problem, whose complexity closely depends on
the geometrical definition of the uncertainty set.

A. Data Uncertainty Set

We assume that the uncertain vectors of thermal energy de-
mand, electrical demand, RES generation, and electricity and
gas pricing coefficients – denoted as q̃(k), b̃(k), r̃(k), κ̃+(k),
κ̃−(k), and ν̃(k), respectively – are modeled as follows:

q(k)− q̂(k) ≤ q̃(k) ≤ q(k) + q̂(k) (59)

b(k)−b̂(k) ≤ b̃(k) ≤ b(k)+b̂(k) (60)
r(k)−r̂(k) ≤ r̃(k) ≤ r(k)+r̂(k) (61)

κ+(k)− κ̂+(k) ≤ κ̃+(k) ≤ κ+(k) + κ̂+(k) (62)
κ−(k)− κ̂−(k) ≤ κ̃−(k) ≤ κ−(k) + κ̂−(k) (63)

ν(k)− ν̂(k) ≤ ν̃(k) ≤ ν(k) + ν̂(k) (64)
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where q̂(k), b̂(k), r̂(k), κ̂+(k), κ̂−(k), ν̂(k) are the vec-
tors collecting the semi-amplitude of maximum variations of
thermal energy demand, net electrical demand, and pricing
coefficients, respectively. Note that both the nominal and semi-
amplitude values (i.e., vectors marked with tilde ∼ and hat
∧, respectively) are computed by forecast algorithms that are
assumed available as well as historical data. Consequently,
the uncertainty model (59)-(64) is defined using a variation
interval centered on the nominal profile rather than identifying
the probability distribution of the uncertain parameters.

The above described sources of uncertainty affect the linear
coefficients π of the objective function (48), the linear coef-
ficients d of constraints (51)–(56), and the linear coefficients
of constraints (57)-(58). Note that the distribution of value for
parameters vectors d̃(k) and π̃(k) is derived from the uncer-
tainty space defined by (60)-(61) and (62)-(64), respectively:

d(k)− d̂(k) ≤ d̃(k) ≤ d(k) + d̂(k) (65)
π(k)− π̂(k) ≤ π̃(k) ≤ π(k) + π̂(k) (66)

where d̂(k) := b̂(k) + r̂(k) and π̂(k) :=(
κ̂+(k)>, (κ̂−(k)+κ̂+(k))>, ν̂(k)>, ν̂(k)>

)>
.

Rather than adopting the worst case protection against
the maximum deviation of uncertainty parameters (i.e., q̃(k),
d̃(k), and π̃(k)) [36], several approaches have been proposed
in the literature to deal with uncertainty minimizing the
impact on objective function and constraints [37]. Differently
from [20], where an adjustable box-uncertainty set method
is considered, we follow the cardinality-constrained approach
proposed in [28]. To this aim, we introduce the robustness
factors (also known as budgets of uncertainty) γq , γd, and
γπ related respectively to the thermal energy demand, the
net electrical demand, and pricing coefficients, to control the
degree of conservatism of the solution.

As for γq , this robustness factor takes values in [0, H] indi-
cating the number of parameters (i.e., q(h), h ∈ [k+1, k+H])
protected against disturbances. The energy scheduling solution
is ensured to be feasible if no more than bγqc of the elements
in q̃(k) are subject to uncertainty, and one of them q̃(h)
changes no more than (γq − bγqc)q̂(h). Analogous meaning
holds for γd, taking values in [0, H] as well; finally, for γπ
the meaning is similar except for the range that takes value in
[0, 4H].

B. Robust MPC Approach

Substituting vectors of nominal profiles q(k), d(k), π(k)
with vectors affected by uncertainty q̃(k), d̃(k), and π̃(k) –
which take values in the uncertainty space defined by (59),
(65), and (66)– the energy scheduling problem (50)–(58) is
transformed into a robust optimization problem. Following
[28], having defined the robustness factors γq , γd, and γπ ,
we now formulate the robust counterpart optimization model
as follows:

min
xgδ(k), xa(k), xel(k), xhp(k),

xchp(k), xes
+(k), xes

−(k), y
ctl(k),

T(k), ychp(k), yboi(k), ya(k),

yts
+(k), y

ts
−(k), z

boi(k), zchp(k),

δes
+(k), δes

−(k), δ
ts
+(k), δ

ts
−(k), δ

g(k)

(
π(k)>ξ(k) + β (ξ(k), γπ)

)
(67)

s.t. (1)-(27), (30), (32)-(33), and

xa(k)+e(k) ◦ δg(k) + d(k) +ψ(γd) ≤ e(k) (68)
xa(k)− e(k) ◦ δg(k) + d(k)−ψ(γd) ≥ 0H (69)

xa(k)−xgδ(k)+e(k) ◦ δg(k)+d(k)−ψ(γd) ≥ e(k) (70)
xa(k)−xgδ(k)+e(k) ◦ δg(k)+d(k)+ψ(γd) ≤ e(k) (71)

xa(k)+d(k)−ψ(γd) ≥ e(k) (72)
xa(k)+d(k)+ψ(γd) ≤ e(k) (73)

ya(k) + ηboizchp(k) + q(k) +ϕ(γq) ≤ ηboig(k) (74)
ya(k) + ηboizchp(k) + q(k)−ϕ(γq) ≥ 0H (75)

where:

β (ξ(k), γπ) =

max
{V∪{v} |V⊆N[0,4H],

|V|=bγπc,v∈N[0,4H]\V}

( ∑
h∈N[0,4H]

π̂(h) |ξ(h)| (76)

+ (γπ − bγπc) π̂(v) |ξ(v)|

)

ψ(γd)=

ψ1(γd)
...

ψH(γd)

= max
u(1),...,u(H)

 u(1)d̂ (1)
...

u(H)d̂ (H)

 (77)

s.t. 0 ≤ u(h) ≤ 1, h ∈ [k+1, k+H] (78)∑
h=∈[k+1,k+H]

u(h) ≤ γd (79)

ϕ(γq)=

ϕ1(γq)
...

ϕH(γq)

= max
u(1),...,u(H)

 u(1)q̂ (1)
...

u(H)q̂ (H)

 (80)

s.t. 0 ≤ u(h) ≤ 1, h ∈ [k+1, k+H] (81)∑
h∈[k+1,k+H]

u(h) ≤ γq. (82)

We preliminarily note that (67)-(75) is a nonlinear optimiza-
tion problem due to the nonlinearities introduced by the func-
tion β (ξ(k), γπ) (denoted as the protection function for the
objective) and the functions ψ(γq) and ϕ(γq) (each denoted
as the protection function for the inequality constraints). As
for the protection function β (ξ(k), γπ), in (76) we introduce
the subset V and the index v to deal with the cardinality-
constrained uncertainty. In particular, V is the subset of time
slot indices whose corresponding cost coefficients get the
maximum deviation from the nominal values. At most bγπc
indices are assumed to belong to this subset. Further, in
case γπ is not integer, we select a time slot index v, whose
corresponding cost coefficient is affected by a variation lower
than the maximum deviation (i.e., the value is between π(v)
and π(v) + π̂(v)). All the remaining cost coefficient get the
nominal values (i.e., π(h) for h not belonging to V and
different from v). Similarly, both in (77)-(79) and (77)-(79), we
introduce the H decision variables u(1), . . . , u(H) to quantify
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the portions (not necessarily integer) of the total uncertainty
budgets γd and γq allocated over all the time slots.

Moreover, we remark that tuning the values of γq , γd,
and γπ different robustness levels can be allocated to the
achievable energy scheduling strategies. On the one hand,
for γb = γq = γr = 0 no robustness is required to the
problem resolution: this corresponds to disregard the forecast
uncertainty and refer to the deterministic scheduling, thus
addressing the most optimistic case. On the other hand, for
γq = γq = H and γπ = 4H the highest robustness is
required to the problem resolution: this means that the largest
variation of parameters is considered, thus addressing the
most conservative case. For the sake of achieving a trade-
off between the level of conservativeness and the cost of the
solution, the budgets of uncertainty γq , γd, and γπ can be tuned
between intermediate value in the range [0, H] and [0, 4H],
respectively [38].

We finally note that, likewise to the deterministic approach
in (49), the robust problem (67)-(75) is solved iteratively
at each time slot k following the rolling horizon principle:
the corresponding closed-loop control algorithm is denoted as
robust MPC (RMPC).

C. Reformulation of the Robust MPC Approach
The robust counterpart of the energy scheduling problem

in its min-max formulation (67)-(75) is hard to solve due
to the presence of the inner maximization problems and the
cardinality constraints included in the protection functions.
Hence, we now present the derivation procedure of a tractable
equivalent robust counterpart optimization model.

We preliminarily introduce the supporting time-varying vari-
ables µ(k) ∈ R, θ(k) ∈ R4H , ζ(k) ∈ RH , and υ(k) ∈ RH .
Getting inspiration from [28] and using the duality theory, it
can be demonstrated that the robust counterpart (67)-(75) is
equivalent to the following MILP formulation:

min
xgδ(k), xa(k), xel(k), xhp(k),

xchp(k), xes
+(k), xes

−(k), y
ctl(k),

T(k), ychp(k), yboi(k), ya(k),

yts
+(k), y

ts
−(k), z

boi(k), zchp(k),

δes
+(k), δes

−(k), δ
ts
+(k), δ

ts
−(k), δ

g(k)

µ(k),θ(k),ζ(k),υ(k)

(
π(k)>ξ(k)+γπµ(k)+1>4Hθ(k)

)

(83)

s.t. (1)-(27), (30), (32)-(33), and

π̂(k) ◦ ξ(k)− µ(k)14H − θ(k) ≤ 04H (84)

xa(k)+e(k) ◦ δg(k) + d̂◦ζ(k) ≤ e(k)− d(k) (85)

xa(k)− e(k) ◦ δg(k)− d̂ ◦ ζ(k) ≥ −d(k) (86)

xa(k)−xgδ(k)+e(k) ◦ δg(k)−d̂◦ζ(k) ≥ e(k)−d(k)(87)

xa(k)−xgδ(k)+e(k) ◦ δg(k)+d̂◦ζ(k) ≤ e(k)−d(k)(88)

xa(k)+d(k)−d̂◦ζ(k) ≥ e(k) (89)

xa(k)+d(k)+d̂◦ζ(k) ≤ e(k) (90)

ya(k) + ηboizchp(k) + q̂◦υ(k)

≤ ηboig(k)−q(k) (91)
ya(k) + ηboizchp(k)− q̂◦υ(k) ≥ −q(k) (92)

µ(k) ≥ 0 (93)
θ(k) ≥ 04H (94)

0H ≤ ζ(k) ≤ 1H (95)
1>Hζ(k) ≥ γd (96)

0H ≤ υ(k) ≤ 1H (97)
1>Hυ(k) ≥ γq. (98)

Finally, we remark that (83)-(98) is an MILP optimization
problem that consists in determining H(N + M + 20) + 1
real and 5H binary decision variables, which minimize the
objective function in (83), and meet 2(H(N +M + 20) + 1)
bounding constraints, (HM +N + 8H) equality constraints,
30H inequality constraints, and H(N + 2) integrality con-
straints.

As a final remark, we note that the proposed RMPC
approach based on (83)-(98) shows several advantages with
respect to other related methods. First, the approach relies
on the uncertainty data model (59)-(64), which makes use
only of the nominal and the variation profiles related to
the uncertain parameters. Hence, differently from stochastic
approaches which typically consider random variables and
requires detailed statistical information on such variables,
here uncertainty modeling is based on a small amount of
information on the disturbances. Second, the reformulated
optimization problem (83)-(98) is a computationally tractable
program, which is not the typical case for other robust ap-
proach such as the stochastic [13] or the multi-stage robust
optimization approach [39]. Lastly, by suitably setting the
values of the budgets of uncertainty, the conservativeness of
the RMPC solution can be directly controlled.

V. NUMERICAL EXPERIMENTS

In this section we apply the proposed robust control scheme
to the online scheduling of a realistic residential multi-carrier
microgrid. Considering that the system grid operators gen-
erally impose by contract to plan one day in advance the
nominal value of energy exchange between the microgrid and
the main grid and that the load and the renewable generation
patterns are cyclic with a 24 hours time period (see, e.g., [14],
[40], [41]), the prediction horizon is set to one day, whilst the
sampling time is set to 1 hour (i.e., H = 24, ∆h = 1hour).
The effectiveness of the proposed method is tested over a
simulation horizon [1, T ] of one year (i.e., T = 8760) using
the following four microgrid performance indices:

• the overall energy cost (EC) – taking into account both
the gas and electricity costs incurred by the microgrid, it
is calculated as the sum of cgr and cgas over the yearly
time horizon, as:

EC= (99)
T∑
k=1

(
κ+(k)xgr+ (k)−κ−(k)xgr− (k)+ν(k)(zboi(k)+zchp(k))

)
.

• the self-supply (SS) – taking values in the interval [0,1],
it is calculated as the difference between 1 and the ratio
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between the energy sold to the grid and the energy
generated in the microgrid by the RES and CHP:

SS = 1−
∑T
k=1 x

gr
− (k)∑T

k=1 r(k) + xchp(k)
. (100)

• the fuel energy saving ratio (FESR) – taking values in the
interval [0,1], it is calculated as the difference between
1 and the ratio between the thermal energy produced by
CHP and boiler and the thermal demand:

FESR = 1−
∑T
k=1 x

boi(k) + xchp(k)∑T
k=1 q(k) +

∑Mctl

m=1 y
ctl
m(k)

. (101)

• the energy independence (EI) – taking values in the
interval [0,1], it is calculated as the difference between
1 and the ratio between the energy bought from the grid
and the energy consumed by CELs, NCELs, and HP:

EI=1−
∑T
k=1 x

gr
+ (k)∑T

k=1x
hp(k)+

∑Nel

n=1 x
el
n(k)+b(k)

. (102)

In addition, for the sake of evaluating the robustness of
the achieved strategies, the following two well-known robust
optimization indices are employed:
• the price of robustness (PoR) – It is defined as the

percentage of relative difference between the energy costs
obtained by a robust solution and a nominal one.

• the constraint violation rate (CVR) – It is computed
as the percentage of times a given solution does not
satisfy the constraints affected by uncertainty over a given
number of realizations of the uncertain parameters (e.g.,
through the runs of a Monte Carlo (MC) simulation).

Note that the PoR measures the optimality deviation of the
robust solution with respect to the nominal one, whilst the
CVR measures the robustness of the robust solution with
respect to the worst case.

A. System Parameters and Settings

The considered multi-carrier microgrid system is installed in
a residential district in the Netherlands, where N=10 house-
holds equipped with electrical and thermal loads (NCELs,
CELs, NCTLs, and CTLs) share photovoltaic (PV) panels,
a HP, a CHP unit, an EESS, and a TESS, as specified in
Section II and depicted in Fig. 1.

As for the electrical and thermal demand, the corresponding
profiles are excerpted from the aggregated Dutch national
consumption curves [42] for year 2018. In particular, for
each household an amount of 3.5 MWh and 14.0 MWh is
considered on average as the yearly demand of electricity and
thermal energy, respectively.

The total household electricity consumption is divided be-
tween NCELs (2 MWh) and CELs (1.5 MWh). Denoting
the hourly residential electrical demand profile in [42] as
B(k) [kWh] and the hourly average residential electrical
consumption over one year as Del

Y [kWh], the hourly profile
b(k) [kWh] of the NCELs is thus determined as follows:

b(k) = N
B(k)∑T
i=1B(i)

Del
Y, k∈ [1, T ].

The corresponding semi-amplitude of maximum variations
(i.e., b̂(k)) of the electrical energy demand is determined as
15% of the nominal value b(k) for each time slot.

In addition to the NCELs, the microgrids comprehends
N cel = 10 CELs that are characterized by the following pa-
rameters whose values are reported in Table I: the cumulative
daily energy consumption Lel

1 , . . . , L
el
10; the lower and upper

bounds for the hourly consumption profiles lel1 , . . . , l
el
10 and

l
el

1 , . . . , l
el

10.
Similarly to the electrical demand, the total household

electricity consumption is divided between NCTLs (4 MWh)
and CTLs (10 MWh). Denoting the hourly residential thermal
demand profile in [42] as Q(k) [kWh] and the hourly average
residential electrical consumption over one year as Dtl

Y [kWh],
the hourly profile q(k) [kWh] of the NCTLs is thus determined
as follows:

q(k) = N
Q(k)∑T
i=1Q(i)

Dtl
Y, k∈ [1, T ].

The corresponding semi-amplitude of maximum variations
(i.e., q̂(k)) of the thermal energy demand is determined as
15% of the nominal value q(k) for each time slot.

In addition to the NCTLs, the microgrids comprehends
M ctl = 10 CTLs that are characterized by the following
parameters: the settling time of the indoor environment (τ )
is set to 1.5 h; the occupants impose the thermal comfort
in the range [19 − 22] °C from 17pm to 8am. The external
temperature is based on hourly averaged measurements [42].

As for the energy generation, we consider the following
types of technologies in the microgrid: PV panel, HP, CHP
unit, and auxiliary boiler. All the technical parameters (such as
operational boundaries, efficiency, etc.) that characterize these
components are reported in Table I in terms of values and
units. In particular, the PV panel has 30 kWp capacity, whilst
the production curve is based on the 2018 Dutch solar power
time series [43].

Furthermore, we assume that the microgrid is equipped
with storage technologies. Specifically, the EESS and TESS
are represented by a lithium-ion battery and a water storage
system for water and space heating, respectively. All the
technical storage parameters (such as efficiency, capacity etc.)
are reported in Table I in terms of values and units.

Finally, the prices of the energy and natural gas are set
considering the average price in the Netherlands. The price
of electricity is based on the spot price on the Nord Pool
electricity market [44]. The buying price (i.e., κ+(k)) is
determined adding to the Nord Pool spot price fees (equal
to 0.03 C/kWh), while selling price (i.e., κ−(k)) is the spot
price. As for the energy exchange of the microgrid with the
distribution grid, we set a maximum hourly buying energy
quantity e(t)=16 kWh and a maximum hourly selling energy
quantity e(t) = 8 kWh. Conversely, the natural gas price is
considered constant and equals ν(k) = 0.08 C/kWh [45],
while the maximum hourly buying gas quantity is set to
g(t)=40 m3.

Finally, similarly to the electrical and thermal energy de-
mand, the corresponding semi-amplitude of maximum vari-
ations of the electricity and gas pricing (i.e., κ̂+(k), κ̂−(k),

10



TABLE I
TECHNICAL PARAMETERS OF THE MICROGRID COMPONENTS.

Parameter Value Unit
ηchpe 0.20 -
ηchpt 0.80 -
lchp 1 kWh

l
chp

14 kWh
ηboi 1 -
pboi 1 kWh
pboi 15 kWh
pchp 8 kWh
pchp 56 kWh
ηhp 3.5 -
php 3.5 kWh
php 42 kWh

rchp, rchp 10 kWh
ρchp, ρchp 10 kWh
ρhp, ρhp 8 kWh
ηes+ ,ηes− 0.95 -
ηts+ , ηts− 0.95 -
ses, sts 0 kWh
ses 10 kWh
sts 8 kWh

Ses, Sts 0 kW

Parameter Value Unit
S
es 40 kW
S
ts 30 kW

lel1 , lel6
(12:00 - 15:59) 0.4 kWh

lel1 , lel6
(16:00 - 11:59) 0.1 kWh

l
el
1 , l

el
6

0.6 kWh
Lel
1 , Lel

6 7.5 kW
lel2 , lel7 0.15 kWh

l
el
2 , lel3 , lel4 ,

l
el
7 , lel8 , lel9 0.5 kWh
Lel
2 , Lel

7 2.5 kW
lel3 , lel8

(12:00 - 15:59) 0.2 kWh

lel3 , lel8
(16:00 - 11:59) 0.1 kWh

Lel
3 , Lel

8 6 kW
lel4 , lel9 0 kWh
Lel
4 , Lel

9 4 kW
lel5 , lel10 0.2 kWh

l
el
5 , l

el
10

0.7 kWh
Lel
5 , Lel

10 5 kW

TABLE II
VALUES OF PERFORMANCE INDICES FOR DIFFERENT ROBUSTNESS

FACTORS.

Index Case 1 Case 2 Case 3
EC [C] 5582 6409 6168

SS 0.88 1 0.95
FESR 0.93 0.82 0.88

EI 0.42 0.29 0.32
PoR [%] 0 14.9 8.9
CVR [%] 35.7 0 9.9

Runtime [s] 102.8 122.1 113.3

and ν̂(k)) is determined as 15% of the nominal values (κ+(k),
κ−(k), and ν(k)) for each time slot.

The proposed robust control scheme is implemented in
MATLAB R2020a on a desktop PC (i7-7500U core 2.70 GHz
processor and 16 GB RAM memory) equipped with the Gurobi
optimizer [46]. In the considered setting the MILP problem
(83)-(98) is characterized by 961 real and 120 binary decision
variables, 1922 bounding constraints, 442 equality constraints,
720 inequality constraints, and 288 integrality constraints.

B. Results Analysis and Discussion

As a first outcome, the proposed control algorithm is tested
on three scenarios that allow to assess the performance of the
whole microgrid, and the impact of the budgets of uncertainty
on the conservativeness and optimality of the achieved results.
The scenarios are defined as follows:
• Case 1 – the deterministic MPC, corresponding to zero-

valued budgets of uncertainty (i.e., γq = γd = γπ = 0).
The nominal values are assigned to the uncertain param-
eters; hence, the protection functions for the objective
function and constraints are removed (i.e., β (ξ(k), γπ) =
0 and ψ(γq) = ϕ(γq) = 0H,1).

• Case 2 – the most conservative case, corresponding to
the maximum budgets of uncertainty (i.e., γq = γd = H
and γπ = 4H). The worst-case realization of uncertain
parameters is considered; hence, functions β (ξ(k), γπ),
ψ(γq), and ϕ(γq) provide the full protection against data
uncertainty.

• Case 3 – the RMPC based on the cardinality uncertainty
set, corresponding to a potential choice for the budgets of
uncertainty γq = γ∗q , γd = γ∗d , and γπ = γ∗π with γ∗q , γ

∗
d ∈

(0, H) and γ∗π ∈ (0, 4H), which make the robustness
of the solution not significantly changing for γq ≥ γ∗q ,
γd ≥ γ∗d , and γπ ≥ γ∗π . These values are determined
through a sensitivity analyses over different robustness
factors (we set γ∗q = 13, γ∗d = 13, and γ∗π = 20).

The values of the microgrid performance indices obtained
over the whole 2018 under the above defined three scenarios
are reported in Table II. As expected, the solution of Case
1 leads to the minimum EC and the best performance for
SS, FESR, and EI, even though this corresponds to the most
optimistic situation where no effect of uncertainty is addressed.
As a consequence, in real conditions, any forecast variation in
the nominal profiles of the thermal energy demand, electrical
demand, RES generation, and electricity and gas pricing
coefficients may produce a significant increase in the achieved
value of the objective function (i.e., the EC). Morever, the
electricity and gas network constraints are not always satisfied
– as shown by the CVR equal to 35.7% – due to the absence
of mitigation of the data uncertainty.

Conversely, the solution of Case 2 ensures full protection
against uncertainty. As expected, on the one hand, this implies
that constraints are never violated (CVR = 0); on the other
hand, this leads to the highest PoR (equal to 14.9%) since the
corresponding highest level of conservativeness is achieved at
the expense of maximum distancing from optimality.

Finally, in Case 3 a tradeoff solution is obtained. From the
optimality perspective, a slight decrease in the EC as well
as in SS, FESR, and EI is apparent; not surprisingly, the
PoR (equal to 8.9%) is quite lower than the Case 2. At the
same time, the solution of Case 3 is quite protected against
uncertainty, implying a CVR equal to 9.9%. This confirms the
effectiveness of the RMPC algorithm to determine a practical
compromise between the microgrid perfomance specified by
the optimization objective (e.g., the EC) and the protection
against the constraint violation.

Furthermore, the last row of Table II reports the average
runtime in the three cases: the computational time over all the
simulations is around two minutes.

As a second outcome, we present a sensitivity analysis of
the 10000 runs MC simulation results with respect to different
budgets of uncertainty γq = γd ∈ [0, H] and γπ ∈ [0, 4H] in
terms of average PoR and CVR, all reported in Fig. 2. As can
be observed from the results, both the PoR and CVR present
a non-linear trend. On the one hand, for any fixed value of γπ ,
as the value of γq = γd increases, the PoR monotonically gets
worse, whilst the CVR monotonically gets better. On the other
hand, for a fixed high value of γq = γd, both the PoR and CVR
are quite constant with respect to changes in γπ; conversely,
for a fixed low value of γq = γd, the variations of the PoR
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Fig. 2. Sensitivity analysis of the average PoR (a) and CVR (b) with respect
to different budgets of uncertainty.

and CVR have a convex and concave profile presenting a local
maximum and minimum, respectively. In addition, the PoR
and the CVR present a mutually dual behavior, confirming
that they are two competing indices: the PoR is lower where
the CVR is higher, and viceversa. This result confirms the
effectiveness of our approach, enabling the chance of a good
trade-off between the total energy payment and the level
of conservativeness by changing the value of the budget of
uncertainty.

C. Comparison with a Baseline Robust Method

With the aim of evaluating and better highlighting the ad-
vantages of our approach with respect to the related literature,
we provide a comparison between the results obtained by the
proposed technique and those achieved by a baseline method,
namely the robust approach based on the box-uncertainty-set.
Such a method relies on the assumption that uncertain parame-
ters take values from their own different ranges independently,
as indicated in [36], [47].

Specifically, we report the findings of a sensitivity analysis
based on the MC simulation, where the microgrid perfor-
mance indices and level of conservativeness of the energy
scheduling strategies is determined for both the proposed
(i.e., RMPC based on cardinality-uncertainty-set) and the

(a)
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(b)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

proposed RMPC approach

box-uncertainty-set method

Fig. 3. PoR (a) and CVR (b) with respect to different budgets of uncertainty
for the RMPC based on cardinality- and box-uncertainty-set.

baseline method (i.e., RMPC based on box-uncertainty-set)
for different budgets of uncertainty. In Fig. 3 we show the
results of the comparison analysis in terms of PoR and CVR.
It is apparent that, event though the CVR of the proposed
RMPC is higher than the box-uncertainty-set method for small
budgets of uncertainty, the proposed RMPC always offers a
less conservative solution. In fact, as shown in Fig. 3.a, the
PoR of the proposed RMPC exhibits lower values than the
box-uncertainty-set method. In addition, from medium to large
budgets of uncertainty, the CVR of the proposed RMPC is
comparable to the box-uncertainty-set method (Fig. 3.b).

These results corroborate the effectiveness of the RMPC
based on cardinality-uncertainty-set: a good compromise be-
tween the total energy cost and the level of conservativeness
can be effectively achieved by the microgrid manager by
suitably tuning the value of the budget of uncertainty.

VI. CONCLUSIONS AND FUTURE WORK

This research work proposes a novel robust model pre-
dictive control algorithm for microgrids that comprise non-
controllable and controllable thermal and electrical loads, i.e.,
multi-carrier microgrids. The aim of this work is to take
advantage of the robust MPC approach in the context of multi-
carrier microgrids, where contributions are still particularly
limited. The objective of the proposed control strategy is to
minimize the overall economical cost and the energy flow
from the main grid, while ensuring thermal comfort. Moreover,
thanks to the robustness of the method, uncertainty in the
system model can be addressed, such as disturbances on loads,
on renewable energy production, and on electrical and thermal
need. The effectiveness of the proposed method is proved by
simulations results obtained for a Dutch residential building
and based on real data. The tests show a substantial decrease
in the electric and thermal balance breach when compared to
the outcomes of the deterministic MPC.
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Finally, several remarks are in order. From the control
perspective, the proposed approach relies on a centralized con-
trol architecture, that generally could suffer from scalability
issues. Hence, future development will focus on extending
the proposed algorithm to a decentralized and distributed
setting and investigating the corresponding performance in
large scale scenarios. As for the system modeling, one may
observe that results and implications are derived relying on
some assumptions such as the price inelasticity. Actually, this
limitation is only apparent, since the proposed model can be
easily generalized to more complex cases by incorporating
different types of objective functions and constraints. An
interesting development of our research will be devoted to
integrating nonlinear stepwise function to better model the
price of both electricity and gas. Moreover, we will consider
expanding our current model with start-up and shut-down
cost and timing constraints related to thermal and electrical
generation. Future researchs will also consider further types of
uncertainty that could impact decision parameters and regard
the outflow of the thermal energy from the microgrid to the
district in exchange for economical compensation. Finally,
from the methodological point of view, since the proposed
approach concerns an online multistage decision problem,
it would be interesting to implement a multistage robust
optimization method and comparing the resulting performance
both in terms of optimality and of computational tractability.
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