
Robust Online Tucker Dictionary Learning fromRobust Online Tucker Dictionary Learning from
Multidimensional Data StreamsMultidimensional Data Streams
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY 4.0

SUBMISSION DATE / POSTED DATE

14-11-2022 / 12-12-2022

CITATION

Thanh, Le Trung; Tran, Trong Duy; abed-meraim, karim; Linh-Trung, Nguyen; hafiane, adel (2022): Robust
Online Tucker Dictionary Learning from Multidimensional Data Streams. TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.21551367.v2

DOI

10.36227/techrxiv.21551367.v2

https://www.techrxiv.org
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.36227/techrxiv.21551367.v2

Robust Online Tucker Dictionary Learning from
Multidimensional Data Streams

Le Trung Thanh∗†, Tran Trong Duy†, Karim Abed-Meraim∗, Nguyen Linh Trung†, and Adel Hafiane∗
∗ University of Orléans, INSA-CVL, PRISME, France

E-mails: {trung-thanh.le,karim.abed-meraim}@univ-orleans.fr and adel.hafiane@insa-cvl.fr
† VNU University of Engineerning and Technology, AVITECH, Vietnam

E-mails: {duytt,linhtrung}@vnu.edu.vn

Abstract—Big data streaming analytics has recently attracted
much attention in the signal and information processing com-
munities due to the fact that massive streaming datasets have
been collected over the years. Among them, many modern data
streams are represented as multidimensional arrays (aka tensors),
and thus, streaming tensor decomposition or tensor tracking has
become a promising tool to analyze such streaming data. In this
paper, we propose a novel online algorithm called ROTDL for
the problem of robust tensor tracking under the Tucker format.
ROTDL is not only capable of tracking the underlying Tucker
dictionary of multidimensional data streams over time, but also
robust to sparse outliers. The proposed algorithm is specifically
designed by using the alternating direction method of multipliers,
block-coordinate descent, and recursive least-squares filtering
techniques. Several experiments demonstrate the effectiveness of
ROTDL for robust tensor tracking.

I. INTRODUCTION

Tensor decomposition (TD) has recently gained much at-
tention from the signal processing and machine learning com-
munities [1]–[3]. TD allows to factorize a tensor which a
multiway array into basic components (e.g., vectors, matrices,
or simpler/smaller tensors). Accordingly, it has become a
powerful processing tool for multivariate and multidimensional
data analysis. In practice, TD has been successfully applied to
various domains, from computer vision [4]–[6] and wireless
communications [7]–[9] to neuroscience [10]–[12].

Recently, the demand for real-time and stream processing
is significantly increasing as a huge number of streaming
data has been acquired over the years [13]. Factorizing ten-
sors from multidimensional data streams is non-trivial due
to several inherent problems of real-time processing, such
as the unbounded volume (data size), concept drift or time-
dependent and varying models, and uncertainty and/or noise.
Despite these challenges, there have been many research efforts
devoted to streaming tensor decomposition or tensor tracking
so far. We refer the readers to [14] for a comprehensive survey
on the state-of-the-art tensor tracking algorithms.

In this study, we focus on one of the most well-known and
widely-used types of TD, namely Tucker decomposition. This
decomposition can be considered as a multiway extension of
SVD for higher-order tensors. Particularly under the Tucker
format, we can express a tensor as a multilinear product
of a small core tensor and a set of loading matrices [15]–
[17]. This format offers several appealing features to represent

(1)

tU

New Observations

1tX

(2)

tU

(1)

tU


(1)

tU

1 1[]I r

2 2[]I r

1tG
(2)

1tU

(1)

1tU


1tX

1tX

2I

1I

3I

1



2I

1I

3I

1 2 (1)[]r r t  

1 2 1[]r r 
tG

1tG

tY

1 2[]r r t 

I r[] 1 1I r[]I r[]

2 2I r[]

Fig. 1: Tracking the underlying Tucker representation of a 3rd-
order streaming tensor X t.

high-order tensors. For example, it allows to decompose any
tensor of any order under a predefined error. Unlike the CP
rank estimation which is known as a NP-hard problem, the
Tucker rank (aka multilinear rank) can be determined in a
stable and efficient way. Nowadays, gross corruptions are
more and more ubiquitous in modern streaming datasets and
systems [18]. They often have a pernicious effect on mining
and knowledge discovery from data. A robust online variant of
TD for streaming tensors called robust tensor tracking (RTT)
has been emerging as a good approach. The main goal of this
study is to propose an effective algorithm for RTT under the
Tucker model.

In the literature, many adaptive (incremental) tensor al-
gorithms have been proposed for streaming Tucker decom-
position. They can be broadly categorized into three main
classes: (i) tensor subspace tracking and (ii) online tensor
dictionary learning, and (iii) multi-aspect streaming Tucker
decomposition. The first class works under the assumptions
that one of tensor modes/dimensions is increasing with time
and the temporal slices (i.e., data streams) interact with the
same core tensor of fixed size. Some notable algorithms
belonging to this class are RPTucker [19], BASS-Tucker [20],
and ATD [21]. In particular, RPTucker is an efficient Rieman-
nian gradient-based algorithm and its stochastic variant can be
used to track the underlying multilinear rank component of
streaming tensors over time [19]. BASS-Tucker is a streaming
Bayesian-based algorithm which is specifically designed for
factorizing sparse streaming tensors [20]. ATD is a fast and
effective adaptive Tucker decomposition which is capable of

dealing with incomplete observations [21]. The second class,
on the other hand, assumes that the underlying core of the
streaming tensor has one dimension growing with time and
each temporal slice of the core associates with a data stream.
The very first algorithm belonging to this class is the so-
called streaming tensor analysis (STA) in [22]. Particularly,
STA is based on the incremental subspace learning on tensor
unfolding matrices. Since then, several other algorithms fol-
lowing the same approach with STA were proposed, such as
IRTSA [23], HO-RLSL [24], and RTSL [25]. Another good
approach is based on online multimodal dictionary learning,
such as OTDL [26], ORLTM [27], and D-L1-Tucker [28].
In particular, they apply a two-step learning procedure to
track the tensor factors over time, including (i) inference of
coefficients in the core tensor and (ii) dictionary update per
each mode, see Fig. 1 for illustration. In this class, the core
tensor is often supposed to be sparse, and hence, the former
step is named as the tensor sparse coding. The third class is
dedicated to tracking multi-aspect streaming tensors under the
Tucker format over time. Such streaming tensors may evolve in
multiple modes/dimensions over time. Two tensor algorithms
in this class are SITTA in [29] and eOTD in [30]. SIITA
provides an inductive framework for tracking the low-rank
tensor approximation of multi-aspect streaming tensors and
completing their missing entries with side information. eOTD
adopts the divide and conquer framework to deal with multi-
aspect streaming tensors. Despite having advantages, most
of the existing streaming Tucker decomposition algorithms
mentioned above are sensitive to sparse outliers. In the adaptive
signal processing literature, there are some other streaming
tensor methods robust to data corruptions such as in [31]–
[34]. However, they are specifically designed under other
tensor formats (i.e., CP/PARAFAC, tensor-train, and t-SVD).
These drawbacks motivate us to design a new adaptive Tucker
decomposition algorithm which is capable of dealing with
sparse corruptions over time.

II. PRELIMINARIES

A. Notations

In this paper, we adopt the following notational conventions.
Scalars, vectors, and matrices are denoted by lowercase letters
(e.g., x), boldface lowercase letters (e.g., x), and boldface
capital letters, respectively. Blackboard bold letters and bold
calligraphic letters are used to represent sets/subsets/supports
(e.g., R) and high-order tensors (e.g., X), respectively. We
denote by xi1,i2,...,iN the (i1, i2, . . . , iN)-th element of X and
its mode-n unfolding matrix is written as X(n). Symbols (.)⊺
and (.)# represent the transpose and pseudo-inverse operators.
Symbol ∥.∥ denotes the Euclidean norm of a vector, matrix,
and tensor. Next, we summarize some algebraic operators on
tensors that are frequently used in this paper.

Considering a N -th order tensor X ∈ RI1×I2×⋅⋅⋅×IN , its n-
mode product with U ∈ RJ×In , written as X ×n U, results in
a new tensor Y ∈ RI1×⋅⋅⋅×In−1×J×In+1×⋅⋅⋅×IN satisfying Y(n) =
UX(n). Its product with a sequence of N matrices {U(n)}Nn=1

Fig. 2: Temporal tensor slice Yt

along N modes is denoted by

X
N

∏
n=1

×nU(n) = X ×1 U(1) ×2 U(2) ×3 ⋅ ⋅ ⋅ ×N U(N). (1)

The concatenation of X with Y ∈ RI1×I2×⋅⋅⋅×IN−1 , written as
X ⊞Y , results in Z ∈ RI1×I2×⋅⋅⋅×IN+1 with elements satisfying

zi1,i2,...,iN =
⎧⎪⎪⎨⎪⎪⎩

xi1,i2,...,iN , if iN ≤ IN ,

yi1,i2,...,iN−1 , if iN = IN + 1.
(2)

The Kronecker product of a sequence of matrices in a reverse
order is denoted by

N

⊗
n=1

U(n) =U(N) ⊗U(N−1) ⊗ ⋅ ⋅ ⋅ ⊗U(1). (3)

B. Tucker Decomposition

Tucker decomposition of a tensor X ∈ RI1×I2×⋅⋅⋅×IN can be
obtained by solving the following minimization

argmin
G,{U(n)}Nn=1

∥X −G
N

∏
n=1

×nU(n)∥
2

F

, (4)

where G is the core tensor of size r1 × r2 × ⋅ ⋅ ⋅ × rN ,
r = [r1, r2, . . . , rN] is the desired low multilinear rank,
and {U(n)}Nn=1 with U(n) ∈ RIn×rn are the tensor factors
(aka loading matrices) [1], [16]. This decomposition can be
considered as a generalization of SVD for factorizing high-
order tensors. Generally, the solution of (4) is not unique in the
sense that we can rotate the columns of U(n) by an orthogonal
matrix Q(n) ∈ Rrn×rn while still retaining the Tucker format.
Interestingly, the column space covering the matrix U(n)

is unique, and hence, we often estimate subspaces of the
tensor factors instead [1], [3]. Two widely-used algorithms for
computing the Tucker decomposition are higher-order SVD
(HOSVD) and higher-order orthogonal iteration (HOOI) [17].

III. PROBLEM FORMULATION

In this work, we consider a (N + 1)-th order streaming
tensor X t fixing all but one mode (dimension). Without loss of
generality, we assume the last mode of X t is temporal. Hence,
we can write X t ∈ RI1×⋅⋅⋅×IN×I

t
N+1 where ItN+1 is growing with

time and {In}Nn=1 are constant. In addition, the τ -th temporal
slice Yτ ∈ RI1×I2×⋅⋅⋅×IN×1 of X t is supposed to be generated
under the following model

Yτ = Lτ +Oτ +N τ , 1 ≤ τ ≤ ItN+1, (5)

see Fig. 2 for an illustration. Here, N τ is a Gaussian noise
tensor, Oτ is a sparse outlier tensor, and Lτ is the low
multilinear-rank component

Lτ = Gτ

N

∏
n=1

×nU(n), (6)

where Gτ ∈ Rr1×r2×⋅⋅⋅×rN (with rn ≤ In ∀n) contains the
tensor coding coefficients and U(n) ∈ RIn×rn is the n-th tensor
factor. The underlying tensorX t is derived from appending the
new slice Yt to the previous X t−1 along the time dimension,
i.e., X t = X t−1 ⊞Yt with ItN+1 = It−1N+1 + 1.

On the arrival of Yt at each time t, we aim to update the
tensor dictionaryDt = {U(n)t }Nn=1 such that they can provide a
good low multilinear-rank approximation for X t. Specifically,
we propose to minimize the following objective function:

Dt = argmin
D

[ft(D)
∆= 1

t

t

∑
τ=1

βt−τ ℓ(Yτ ,D)], (7)

where β ∈ (0,1] is the forgetting parameter aimed to discount
the effect of past observations and the loss function ℓ(⋅) with
respect to the τ -th slice Yτ is defined as

ℓ(Yτ ,D) =min
G,O
∥Yτ −O −G

N

∏
n=1

×nU(n)∥
2

F

+ ρ1∥O∥1 + ρ2∥G∥1, (8)

where the first term of ℓ(.)measures the difference between the
observation and estimation; the second term ∥O∥1 and ∥G∥1
are to promote the sparsity on the outlier tensor and coding
coefficients. To support our algorithm presented in the next
section, we assume that (i) the rank [r1, r2, . . . , rN] is given
in advance and (ii) the tensor dictionary Dt is fixed or slowly
varying with time.

IV. PROPOSED METHOD

In this section, we propose a novel adaptive Tucker de-
composition algorithm called ROTDL which stands for Robust
Online Tucker Dictionary Learning. Particularly on the arrival
of the new data Yt, ROTDL performs two main stages: (i)
tensor sparse coding and (ii) Tucker dictionary update. In what
follows, we describe each stage of ROTDL in detail.

A. Tensor Sparse Coding

Under the assumption that Dt ≊ Dt−1, we can determine
the tensor coding coefficients in Gt and the sparse outlier Ot

by minimizing the loss function

{Gt,Ot} = argmin
G,O

ℓ(Yt,Dt−1). (9)

Particularly, vectorizing (9) results in

{gt,ot} = argmin
g,o

∥yt − o −Ht−1g∥
2

2
+ ρ1∥o∥1 + ρ2∥g∥1,

(10)

where Ht−1 =⊗N
n=1U

(n)
t−1. In practice, we can set ρ1 = ρ2 = ρ

and hence recast (10) into the standard LASSO problem

{gt,ot} = argmin
α

∥yt −At−1α∥
2

2
+ ρ∥α∥1, (11)

where α = [o⊺,g⊺]⊺ contains unknown parameters of interest
and At−1 = [I, Ht−1] where I is the identity matrix. Accord-
ingly, provable LASSO solvers can be used to minimize (11)
effectively. For example, we can apply the following ADMM-
based solver introduced in [35] whose the k-th ADMM step
is given by

● αk = (A⊺t−1At−1 + ηI)−1(A⊺t−1yt + η(zk−1 − ek−1))
● zk = Sρ/2η(αk + ek−1)
● ek = ek−1 +αk − zk

where zk and ek are auxiliary variables, η > 0 is a small
regularization parameter, and Sγ(.) is the soft-thresolding
operator defined as

Sγ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − γ if x ≥ γ
0 if γ > x > −γ
x + γ if x ≤ −γ

. (12)

It is worth noting that as all three terms of (10) are convex, we
can apply several alternating optimization methods to minimize
it efficiently, e.g., alternating direction method of multipliers
and block-coordinate descent methods.

B. Tucker Dictionary Update

In this stage, we update each factor U(n)t of Dt by

U
(n)
t = argmin

U(n)
[1
t

t

∑
τ=1

βt−τ∥Yτ −Oτ −Gτ

N

∏
m=1,≠n

×m

×m U
(m)
t−1 ×n U(n)∥

2

F
]. (13)

We can reformulate (13) as follows

U
(n)
t = argmin

U(n)
[1
t

t

∑
τ=1

βt−τ∥Y(n)τ −O(n)τ −U(n)W(n)
τ ∥

F
],

(14)

where W
(n)
τ =G(n)τ [⊗N

m=1,m≠nU
(m)
t−1]

⊺

. The factor U(n)t can
be obtained by setting the first derivative of (14) to zero

U
(n)
t [

t

∑
τ=1

βτ−1W(n)
τ (W(n)

τ)
⊺]

=
t

∑
τ=1

βτ−1(Y(n)τ −O(n)τ)(W(n)
τ)

⊺

. (15)

Now, let us denote the two auxiliary matrices

V
(n)
t =

t

∑
τ=1

βτ−1W(n)
τ (W

(n)
t)

⊺

, (16)

Z
(n)
t =

t

∑
τ=1

βτ−1(Y(n)τ −O(n)τ)W(n)
τ

⊺

. (17)

Specifically, V(n)t and Z
(n)
t can be recursively updated as

V
(n)
t = βV(n)t−1 +W

(n)
t (W

(n)
t)

⊺

, (18)

Z
(n)
t = βZ(n)t−1 + (Y

(n)
t −O(n)t)(W

(n)
t)

⊺

. (19)

Accordingly, the right hand side (RHS) of (15) is given by

RHS of (15) = βZ(n)t−1 + (Y
(n)
t −O(n)t)(W

(n)
t)

⊺

= βU(n)t−1V
(n)
t−1 + (Y

(n)
t −O(n)t)(W

(n)
t)

⊺

=U(n)t−1(V
(n)
t −W(n)

t (W
(n)
t)

⊺) + (Y(n)t −O(n)t)(W
(n)
t)

⊺

=U(n)t−1V
(n)
t + (Y(n)t −O(n)t −U(n)t−1W

(n)
t)(W

(n)
t)

⊺

. (20)

From (15) and (20), we obtain the following update rule

U
(n)
t =U(n)t−1 +∆Y

(n)
t Q

(n)
t , where (21)

∆Y
(n)
t =Y(n)t −O(n)t −U(n)t−1W

(n)
t , (22)

Q
(n)
t = (W(n)

t)
⊺(V(n)t)

−1
. (23)

In order to enable the update (21), we can initialize V
(n)
0 =

δ(n)Irn with a small number δ(n) > 0.

V. EXPERIMENTAL RESULTS

In this section, we conduct several experiments to demon-
strate the tracking ability of ROTDL. Particularly, its per-
formance is evaluated in the following aspects: (i) ef-
fect of the additive noise, (ii) effect of the sparse out-
liers, (iii) its tracking ability in nonstationary and time-
varying environments, and (iv) performance comparisons with
the state-of-the-art online (adaptive) Tucker decomposition
algorithms. Our MATLAB codes are available online at
https://github.com/thanhtbt/ROTDL.

Experiment Setup: At each time t > 0, we generate the t-th
temporal slice Yt ∈ RI1×I2×⋅⋅⋅×IN of the underlying streaming
tensor X t ∈ RI1×⋅⋅⋅×IN×t as follows

Yt = Gt

N

∏
n=1

×nU(n)t +Oτ +N τ . (24)

Here, the tensor Gt is given by Gt = Pt ⊛Qt ∈ Rr1×r2×⋅⋅⋅×rN

where Pt is a binary mask tensor whose entries are i.i.d.
Bernoulli random variables with probability ωsparsity; Qt

is generated from a Gaussian distribution with zero mean
and unit variance; and both Pt and Qt share the same size
with Gt. Ot ∈ RI1×I2×⋅⋅⋅×IN is a sparse outlier tensor whose
entries are drawn uniformly from the range [0, facoutlier]
and the locations of outliers follow a Bernoulli distribution
with probability ωoutlier. N t ∈ RI1×I2×⋅⋅⋅×IN is a Gaussian
noise tensor whose entries are derived from N (0, σ2

n). The
n-th tensor factor U(n) ∈ RIn×rn is varied under the following
data model:

U
(n)
t =U(n)t−1 + εM

(n)
t , (25)

where M
(n)
t ∈ RIn×rn is a Gaussian noise of zero mean and

unit variant and ε > 0 is to control the time variation of U(n)

over time.

0 100 200 300 400 500
10

-8

10
-5

10
-2

10
1

Fig. 3: Effect of the noise level σn

At t = 0, we draw G0 and {U(n)0 }Nn=1 from a Gaussian
distribution with zero-mean and unit-variance.

We use the Subspace Estimation Performance (SEP) metric
[36] to measure the tracking accuracy of algorithms:

SEP = 1

N

N

∑
n=1

tr{(U(n)es)
#(I −U(n)tr (U

(n)
tr)

#)U(n)es }

tr{(U(n)es)
#(U(n)tr (U

(n)
tr)

#)U(n)es }
, (26)

where U
(n)
tr (resp. U

(n)
es) refers to the ground truth (resp.

estimation) of the n-th tensor factor U(n) at each time t.
Specifically, the denominator of (26) evaluates the sum of
the squares of the cosines of the canonical angles between
U
(n)
es and U

(n)
tr . Meanwhile, its numerator measures the similar

sum but for the estimation and the orthogonal complement of
ground truth (see [36] for further details). Accordingly, the
lower the value of SEP is, the better performance the algorithm
has. In all experiments, we set the forgetting factor β to 0.5.
The experimental results are averaged over 10 independent
runs.

Effect of the noise level: We use a streaming tensor X t

of size 10 × 15 × 20 × 500 whose temporal slices {Yτ}500τ=1

are derived from the data model (24) with rank [3,3,3]. The
sparsity level ωsparsity in each core tensor Gτ is set to 0.3. To
investigate the effect of noise, we vary the value of σn among
{0.01,0.1,1} while other parameters are kept constant (i.e.,
ε = 0 and ωoutlier = 0). Also, an abrupt change is created at
t = 300. The experimental results from Fig. 3 indicate that the
noise level σn has an impact on both the convergence rate and
estimation accuracy of ROTDL. The higher the value of σn is,
the worse the performance of ROTDL is.

Effect of the time-varying factor: In this task, we reuse the
underlying streaming tensor X t above. The noise level σn and
the outlier density ωoutlier are set to 0.01 and 0, respectively.
Here, we vary the value of ε among {0,10−3,10−2,10−1} and
then evaluate the SEP metric of ROTDL. As can be seen from
Fig. 4 that ROTDL is fully capable of tracking the underlying
Tucker dictionary of the streaming tensor in slowly time-
varying environments. However, ROTDL does not work well

0 100 200 300 400 500

10
-8

10
-5

10
-2

10
1

Fig. 4: Effect of the time-varying factor ε

when the time-varying factor is large (e.g., ε = 0.1).
Effect of the sparse outliers: Next, we study the robust-

ness of ROTDL against sparse corruptions. The noise level
σn and time-varying factor ε are both set to 10−3. The
values of the outlier intensity facoutlier and outlier den-
sity ωoutlier are, respectively, chosen in the set {0.1,1,10}
and {10%,30%,50%}. Experimental results are illustrated in
Fig. 5. We can see that ROTDL is robust to sparse outliers,
even when they are strong (e.g., facoutlier = 10) and/or the
number of corrupted entries is huge (e.g., ωoutlier = 50%).

Performance comparisons with the state-of-the-art online
Tucker decomposition algorithms: Finally, the tracking ability
of ROTDL is compared to that of DTA [22], STA [22], and
ATD [21]. We consider two cases of sparse outliers (i.e., 5%
and 20% corruptions) and two levels of the noise and time-
varying factors (i.e., 10−2 and 10−3). Fig. 6 indicates that
ROTDL outperforms DTA, STA, and ATD completely.

VI. CONCLUSIONS

In this paper, we have considered the problem of robust
tensor tracking under the Tucker format. A new effective online
Tucker decomposition algorithm called ROTDL was proposed
to track the underlying Tucker dictionary of streaming tensors
over time. ROTDL can deal with imperfect multidimensional
data streams from noisy and slowly time-varying environ-
ments. Experimental results show that ROTDL outperforms
the state-of-the-art online Tucker decomposition algorithms,
especially when streaming tensors are corrupted by outliers.

ACKNOWLEDGMENT

This work is supported by Project CN22.03 granted by the
University of Engineering and Technology, Vietnam National
University, Hanoi.

REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[2] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and A. H. Phan, “Tensor decompositions for signal processing applica-
tions: From two-way to multiway component analysis,” IEEE Signal
Process. Mag., vol. 32, no. 2, pp. 145–163, 2015.

0 100 200 300 400 500
10

-8

10
-5

10
-2

10
1

(a) Outlier Intensity (with ωoutlier = 10%)

0 100 200 300 400 500
10

-5

10
-3

10
-1

10
1

(b) Outlier density (with facoutlier = 10)

Fig. 5: Effect of Sparse Outliers.

[3] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Trans. Signal Process., vol. 65, no. 13, pp.
3551–3582, 2017.

[4] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis of image
ensembles: Tensorfaces,” in Eur. Conf. Comput. Vision, 2002, pp. 447–
460.

[5] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “MPCA: Multilin-
ear principal component analysis of tensor objects,” IEEE Trans. Neural
Netw., vol. 19, no. 1, pp. 18–39, 2008.

[6] Y. Panagakis, J. Kossaifi, G. G. Chrysos, J. Oldfield, M. A. Nicolaou,
A. Anandkumar, and S. Zafeiriou, “Tensor methods in computer vision
and deep learning,” Proc. IEEE, vol. 109, no. 5, pp. 863–890, 2021.

[7] G. Favier and A. L. de Almeida, “Tensor space-time-frequency coding
with semi-blind receivers for MIMO wireless communication systems,”
IEEE Trans. Signal Process., vol. 62, no. 22, pp. 5987–6002, 2014.

[8] J. Feng, L. T. Yang, X. Liu, and R. Zhang, “Privacy-preserving tensor
analysis and processing models for wireless internet of things,” IEEE
Wirel. Commun., vol. 25, no. 6, pp. 98–103, 2018.

[9] H. Chen, F. Ahmad, S. Vorobyov, and F. Porikli, “Tensor decompositions
in wireless communications and MIMO radar,” IEEE J. Sel. Topics Signal
Process., vol. 15, no. 3, pp. 438–453, 2021.

[10] E. Karahan, P. A. Rojas-Lopez, M. L. Bringas-Vega, P. A. Valdés-
Hernández, and P. A. Valdes-Sosa, “Tensor analysis and fusion of
multimodal brain images,” Proc. IEEE, vol. 103, no. 9, pp. 1531–1559,
2015.

[11] A. G. Mahyari et al., “A tensor decomposition-based approach for

0 100 200 300 400 500
10

-5

10
-3

10
-1

10
1

(a) ωoutlier = 5% and σn = ε = 10−3

0 100 200 300 400 500
10

-5

10
-3

10
-1

10
1

(b) ωoutlier = 5% and σn = ε = 10−2

0 100 200 300 400 500

10
-3

10
-1

10
1

(c) ωoutlier = 20% and σn = ε = 10−3

Fig. 6: Performance comparisons between the state-of-the-art
online Tucker decomposition algorithms.

detecting dynamic network states from EEG,” IEEE Trans. Biomed. Eng.,
vol. 64, no. 1, pp. 225–237, 2016.

[12] N. T. A. Dao, N. V. Dung, N. L. Trung, K. Abed-Meraim et al.,
“Multi-channel EEG epileptic spike detection by a new method of tensor
decomposition,” J. Neural Eng., vol. 17, no. 1, p. 016023, 2020.

[13] T. Kolajo, O. Daramola, and A. Adebiyi, “Big data stream analysis: A

systematic literature review,” J. Big Data, vol. 6, no. 1, pp. 1–30, 2019.
[14] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane,

“A contemporary and comprehensive survey on streaming
tensor decomposition,” Techrxiv, 2022. [Online]. Available:
https://doi.org/10.36227/techrxiv.20105966.

[15] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[16] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular
value decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp.
1253–1278, 2000.

[17] ——, “On the best rank-1 and rank-(r1,r2,...,rn) approximation of
higher-order tensors,” SIAM J. Matrix Anal. Appl., vol. 21, pp. 1324–
1342, 2000.

[18] T. Akidau, S. Chernyak, and R. Lax, Streaming Systems: The What,
Where, When, and How of Large-Scale Data Processing, 2018.

[19] H. Kasai and B. Mishra, “Low-rank tensor completion: A Riemannian
manifold preconditioning approach,” in Int. Conf. Mach. Learn., 2016,
pp. 1012–1021.

[20] S. Fang, R. M. Kirby, and S. Zhe, “Bayesian streaming sparse Tucker
decomposition,” in Conf. Uncertain. Artif. Intell., 2021, pp. 558–567.

[21] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane,
“Tracking online low-rank approximations of incomplete high-
order streaming tensors,” Techrxiv, 2022. [Online]. Available:
https://doi.org/10.36227/techrxiv.19704034.

[22] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Incremental
tensor analysis: Theory and applications,” ACM Trans. Knowl. Discov.
Data, vol. 2, no. 3, pp. 1–37, 2008.

[23] W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank, and Z. Zhang, “Incremental
tensor subspace learning and its applications to foreground segmentation
and tracking,” Int. J. Comput. Vis., vol. 91, no. 3, pp. 303–327, 2011.

[24] A. Ozdemir, E. M. Bernat, and S. Aviyente, “Recursive tensor subspace
tracking for dynamic brain network analysis,” IEEE Trans. Signal Inf.
Process. Netw., vol. 3, no. 4, pp. 669–682, 2017.

[25] J. Li, G. Han, J. Wen, and X. Gao, “Robust tensor subspace learning
for anomaly detection,” Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp.
89–98, 2011.

[26] A. Traore, M. Berar, and A. Rakotomamonjy, “Online multimodal
dictionary learning,” Neurocomput., vol. 368, pp. 163–179, 2019.

[27] P. Li, J. Feng, X. Jin, L. Zhang, X. Xu, and S. Yan, “Online robust low-
rank tensor modeling for streaming data analysis,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 4, pp. 1061–1075, 2019.

[28] D. G. Chachlakis, M. Dhanaraj, A. Prater-Bennette, and P. P. Markopou-
los, “Dynamic L1-norm Tucker tensor decomposition,” IEEE J. Sel.
Topics Signal Process., vol. 15, no. 3, pp. 587–602, 2021.

[29] M. Nimishakavi, B. Mishra, M. Gupta, and P. Talukdar, “Inductive
framework for multi-aspect streaming tensor completion with side in-
formation,” in ACM Int. Conf. Inf. Knowl. Manag., 2018, pp. 307–316.

[30] H. Xiao, F. Wang, F. Ma, and J. Gao, “eOTD: An efficient online tucker
decomposition for higher order tensors,” in IEEE Int. Conf. Data Min.,
2018, pp. 1326–1331.

[31] L. Dongjin and S. Kijung, “Robust factorization of real-world tensor
streams with patterns, missing values, and outliers,” in IEEE Int. Conf.
Data Eng., 2021, pp. 840–851.

[32] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “Robust
tensor tracking with missing data and outliers: Novel adaptive CP
decomposition and convergence analysis,” IEEE Trans. Signal Process.,
vol. 70, pp. 4305–4320, 2022.

[33] ——, “Robust tensor tracking with missing data under tensor-train
format,” in Eur. Signal Process. Conf., 2022, pp. 832–836.

[34] M. M. Salut and D. V. Anderson, “Online tensor robust principal
component analysis,” IEEE Access, vol. 10, pp. 69 354–69 363, 2022.

[35] S. Boyd et al., “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, 2011.

[36] L. T. Thanh, N. V. Dung, N. L. Trung, and K. Abed-Meraim, “Robust
subspace tracking with missing data and outliers: Novel algorithm with
convergence guarantee,” IEEE Trans. Signal Process., vol. 69, pp. 2070–
2085, 2021.

	Robust Online Tucker Dictionary Learning from Multidimensional Data Streams

