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Robust Lane Change Decision Making for
Autonomous Vehicles: An Observation Adversarial

Reinforcement Learning Approach
Xiangkun He, Member, IEEE, Haohan Yang, Zhongxu Hu, Member, IEEE, and Chen Lv, Senior Member, IEEE

Abstract—Reinforcement learning holds the promise of allow-
ing autonomous vehicles to learn complex decision making behav-
iors through interacting with other traffic participants. However,
many real-world driving tasks involve unpredictable perception
errors or measurement noises which may mislead an autonomous
vehicle into making unsafe decisions, even cause catastrophic
failures. In light of these risks, to ensure safety under perception
uncertainty, autonomous vehicles are required to be able to cope
with the worst case observation perturbations. Therefore, this
paper proposes a novel observation adversarial reinforcement
learning approach for robust lane change decision making of
autonomous vehicles. A constrained observation-robust Markov
decision process is presented to model lane change decision mak-
ing behaviors of autonomous vehicles under policy constraints
and observation uncertainties. Meanwhile, a black-box attack
technique based on Bayesian optimization is implemented to
approximate the optimal adversarial observation perturbations
efficiently. Furthermore, a constrained observation-robust actor-
critic algorithm is advanced to optimize autonomous driving
lane change policies while keeping the variations of the policies
attacked by the optimal adversarial observation perturbations
within bounds. Finally, the robust lane change decision making
approach is evaluated in three stochastic mixed traffic flows based
on different densities. The results demonstrate that the proposed
method can not only enhance the performance of an autonomous
vehicle but also improve the robustness of lane change policies
against adversarial observation perturbations.

Index Terms—Autonomous vehicle, lane change decision mak-
ing, robust decision making, reinforcement learning, adversarial
attack.

I. INTRODUCTION

IN recent years, autonomous driving has attracted significant
attention since its promise is profound to revolutionize

automobile industry [1], [2]. However, safety remains a major
challenge for the development of autonomous vehicles [3], [4],
[5]. Undesirable decision making behaviors of autonomous
vehicles may endanger life safety and cause enormous eco-
nomic loss. As one of the most advanced artificial intelligence
technologies, reinforcement learning (RL) has achieved a
success in fulfilling a series of challenging decision making
tasks (e.g., Go and StarCraft II) [6], [7], [8]. Hence, applying
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RL to decision making task of autonomous driving has become
a hot topic for researchers [9].

While existing RL based decision making methods of
autonomous vehicles have achieved many compelling results
[10], [11], [12], [13], the real-world driving tasks involve
unavoidable measurement errors or sensor noises which may
mislead an autonomous vehicle into making suboptimal de-
cisions, even cause catastrophic failures. In light of these
risks, autonomous vehicles are required to ensure that their
decision making systems can handle the natural observation
uncertainties from sensing and perception system, especially
adversarial perturbations. However, few researches concern
and cope with the aforementioned challenge.

Therefore, in this paper, a novel observation adversarial RL
(OARL) approach for robust lane change decision making is
proposed to improve the performance of an autonomous vehi-
cle while enhancing the robustness of driving policies against
adversarial observation perturbations. The main contributions
of this paper are summarized as follows:

• A constrained observation-robust Markov decision pro-
cess (COR-MDP) is advanced to model lane change
decision making behaviors of an autonomous vehicle
under policy constraints and observation perturbations.
Meanwhile, a black-box attack technique with Bayesian
optimization is implemented to approximate the optimal
adversarial observation perturbations efficiently.

• A constrained observation-robust actor-critic (COR-AC)
algorithm is presented to optimize lane change policies
and minimize the Jensen–Shannon (JS) divergence based
average variation distance of the policies attacked by the
optimal adversarial observation perturbations.

Three testing cases with different traffic flow densities are
implemented to evaluate the performance of our robust lane
change decision making approach through simulation of urban
mobility (SUMO) [14], [15]. The results demonstrate that
the proposed OARL method is effective and outperforms the
competitive baselines.

The rest of this paper is arranged as follows. The related
works with respect to this paper are reviewed in Section II.
The proposed OARL method for robust decision making of
autonomous vehicles is illustrated in Section III. Implemen-
tation details of our method are provided in Section IV. The
evaluation results and analyses are discussed in Section V. The
conclusions of this paper are made in Section VI.
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II. RELATED WORK

According to different driving behaviors (e.g., lane change,
acceleration or deceleration) or tasks (e.g., overtaking or
ramp merging) in existing related studies, RL based decision
making of autonomous vehicles can roughly be divided into
three categories: longitudinal, lateral and coordinated decision
making [9]. RL based longitudinal decision-making methods
generally adopt RL algorithm to determine the speed modes
of autonomous vehicles, such as keeping, acceleration and
deceleration [11], [16], [17], [18].

A. Reinforcement Learning based Lateral Decision Making
for Autonomous Vehicles

RL based lateral decision making approaches of au-
tonomous vehicles mostly employ RL algorithm to learn lane
change behaviors or select target lanes. One popular paradigm
is the lateral decision making schemes with the deep Q-
network (DQN) or its variants. A lane change decision-making
framework for autonomous vehicles is developed to learn
risk sensitive driving policies using risk-awareness prioritized
replay DQN in [12]. A lane change decision making method is
presented for autonomous vehicles through DQN with safety
verification in [19]. A harmonious lane-changing decision
making approach based on DQN is advanced to improve
overall traffic efficiency in [20]. A DQN method with rule-
based constraints is developed for lane change decision making
of autonomous vehicles in [21]. A lane change decision-
making approach for autonomous vehicles is developed via
double DQN with the structure of Deep Sets in [22]. A
lane change decision making method based on partial ob-
served Markov decision process and DQN is introduced for
autonomous vehicles in [23]. The above methods are simple
but effective. Moreover, combined with rule based constraints,
the driving safety of autonomous vehicles can be guaranteed.
However, these schemes can not find the optimal driving
policies necessarily.

In addition to the DQN based paradigms, there are the
autonomous driving lateral decision making approaches with
other RL algorithms. A proximal policy optimization (PPO)
based lane change decision-making method is presented for
autonomous drving in [13]. A multi-objective approximate
policy iteration algorithm is proposed to implement lane
change decision making of an autonomous vehicle in [24]. A
lane change decision-making scheme based on attention-based
hierarchical deep RL is proposed for autonomous vehicles in
[25]. Although these methods may achieve better performance
than the DQN based schemes, the robust decision-making
problem of autonomous vehicles is not studied among them.

B. Reinforcement Learning based Coordinated Decision Mak-
ing for Autonomous Vehicles

RL based coordinated decision making schemes usually
leverage RL algorithm to determine longitudinal and lateral
driving behaviors of autonomous vehicles simultaneously. A
longitudinal and lateral coordinated decision making approach
based on AlphaGo Zero algorithm is developed for au-
tonomous vehicles in [26]. The requested speed and target lane

can be determined by the five decision making behaviors of RL
agent simultaneously. A DQN based decision making method
is advanced, which can simultaneously determine discrete
speed modes and lane change behaviors of an autonomous
vehicle in [27]. An optimization embedded RL with ac-
tor–critic framework is presented to determine longitudinal and
lateral coordinated decision making behaviors for autonomous
vehicles in [28]. A coordinated decision making method based
on deep deterministic policy gradient algorithm is developed
to determine throttle and steering maneuvers for autonomous
driving in [29]. Unfortunately, the above methods mostly
assume that the state observations are free of unexpected
perturbations. Such assumption can hardly hold in real-world
scenarios.

III. OBSERVATION ADVERSARIAL REINFORCEMENT
LEARNING FOR ROBUST DECISION MAKING

A. Robust Lane Change Decision Making Framework for
Autonomous Vehicles

Fig. 1. Framework of the proposed robust lane change decision-making
approach for autonomous driving.

Since the existing lane change decision-making framework
of autonomous vehicles do not take into account perception
uncertainty mostly, the robust lane change decision making
framework with OARL algorithm is proposed to cope with the
adversarial perturbations on state observations in autonomous
driving, as shown in Fig. 1. Ego vehicle is red, and it is an
autonomous vehicle. The longitudinal decision-making of the
ego vehicle is implemented by SUMO based intelligent driving
model (IDM). The vehicles of other colors are social vehicles,
and the longitudinal and lateral driving behaviors of the social
vehicles are determined by the IDM of SUMO. The social
vehicles can perform lane change maneuvers via the LC2013
model [30] in SUMO. Moreover, the output of the ego vehicle
is discrete, which includes lane keeping, left lane changing and
right lane changing.

Our RL autonomous driving agent seeks to maximize the
expected return while satisfying the policy constraints. In
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Fig. 1, the block with respect to COR-MDP and COR-AC is
used for optimizing robust driving policy and interacting with
the environment. Its input includes state s, reward r and the
optimal adversarial observation perturbations ∆∗. t denotes
time step. The optimal adversarial observation perturbations
∆∗ contains the optimal adversarial multiplicative-perturbation
∆∗m and the optimal adversarial additive-perturbation ∆∗a. The
output is the action a based on the policy π(a|s).

The block with regard to the black-box attacks is employed
to approximate the optimal adversarial perturbations. The input
of this block includes state s and the policy π(a|s), and its
output is the optimal adversarial perturbation. Additionally, the
block associated with the environment is leveraged to generate
state s and reward r. Its input is the action a based on the
policy π(a|s), and the output contains state s and reward r.

B. Constrained Observation-robust Markov Decision Process

To model the decision making behaviors of RL based
autonomous driving agent under policy constraints and obser-
vation perturbations, the proposed COR-MDP is introduced in
this section.

Definition 1: A COR-MDP can be characterized via a 7-
tuple (S,A, p, r, c,∆, γ). S is the set of states called the state
space. A is the set of actions called the action space. p is the
transition probability distribution of the next state s′ ∈ S given
the current state s ∈ S and action a ∈ A. r : S × A → R
represents the reward function, and c denotes the constraint
function. ∆ indicates the observation perturbation. γ ∈ (0, 1)
is the discount factor.

COR-MDP attempts to solve the following problem:

max
π

E

[
T∑
t=0

γtr(st, at)

]
,

s.t. E [c(s, s′,∆)] ≤ ε, (1)

where T is timestep, and ε is an expected minimum deviation.

C. Black-Box Attack with Bayesian Optimization

In this section, the black-box attack based on Bayesian
optimization is implemented to approximate the optimal ad-
versarial observation perturbations.

Bayesian optimization is a black-box optimization algorithm
with Bayes theorem [31]. This approach works by building
a probabilistic model of the objective function, called the
surrogate model, that is then searched efficiently through an
acquisition function before candidate samples are determined
for evaluation on the real objective function [32], [33].

The JS divergence is a symmetrized and smoothed version
of the Kullback–Leibler (KL) divergence [34], [35]. But more
importantly, JS divergence has a finite value which is bounded
by 1 for two probability distributions. Hence, JS divergence is
employed to measure average variation distance of the policies

attacked by the observation perturbations. The optimization
objective with JS divergence can be designed as:

c(s, s′,∆) = DJS (π(a|s)||π(ã|s̃)) +DJS

(
π(a|s′)||π(ã|s̃′)

)
=

1

2
DKL (π(a|s)||m) +

1

2
DKL (π(ã|s̃)||m) (2)

+
1

2
DKL (π(a|s′)||m′) +

1

2
DKL

(
π(ã|s̃′)||m′

)
,

where DJS represents the distance based on JS divergence,
DKL denotes KL divergence, and{

s̃ = ∆ms+ ∆a,

s̃′ = ∆ms′ + ∆a,
(3)

{
m = 1

2 (π(a|s) + π(ã|s̃)),
m′ = 1

2 (π(a|s′) + π(ã|s̃′)),
(4)

where ã, s̃ and s̃′ are the action, the state and the next state
perturbed by observation perturbations respectively.

Therefore, our black-box attack approach is formulized as:

∆∗ ∈ arg max
∆

E[c(s, s′,∆)], (5)

s.t.
∣∣∆m −∆0

m

∣∣ ≤ δm, ∣∣∆a −∆0
a

∣∣ ≤ δa,
where ∆ = [∆m ∆a] represents observation perturba-
tion, ∆m and ∆a are the multiplicative-perturbation and the
additive-perturbation, ∆0

m and ∆0
a are the reference values of

the multiplicative-perturbation and the additive-perturbation,
δm and δa are the desired bounds of the multiplicative-
perturbation and the additive-perturbation respectively.

Algorithm (1) outlines the black-box attack method using
Bayesian optimization. The acquisition function is designed
through upper confidence bound (UCB) [36]. Additionally,
Gaussian process is leveraged to built surrogate model for the
optimization objective in our algorithm.

Algorithm 1 Black-box attack with Bayesian optimization
for i = 1, 2, ..., I do

Find new adversarial observation perturbation ∆i =
[∆i

m ∆i
a] via optimizing the acquisition function UCB(·)

over Gaussian process model:{
∆i = arg max

∆
UCB(∆|M1:i−1),

s.t.
∣∣∆m −∆0

m

∣∣ ≤ δm, ∣∣∆a −∆0
a

∣∣ ≤ δa.
Compute the objective function E[c(s, s′,∆i)].
Augment data to memory M :
M1:i =M1:i−1 ∪

{
∆i,E[c(s, s′,∆i)]

}
.

Update the Gaussian process model.
end for

D. Constrained Observation-Robust Actor-Critic
To learn the robust optimal lane change policy, the proposed

COR-AC algorithm is introduced in this section. COR-AC
attempts to solve the following optimization problem:

max
π

E

[
T∑
t=0

γtr(st, at)

]
,

s.t. E [c(s, s′,∆∗)] ≤ ε, (6)
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where ∆∗ = [∆∗m ∆∗a] represents the optimal adversarial
observation perturbation.

A policy iteration (PI) scheme is employed to solve COR-
MDP, which is called constrained observation-robust PI (COR-
PI). COR-PI consists of policy evaluation and policy improve-
ment, and they are iteratively updated until convergence.

According to Lagrange duality theory [37], the Lagrange
function of the optimization problem (6) can be derived as:

L(π, λ) = E

[
T∑
t=0

γtr(st, at) + λ(ε− c(s, s′,∆∗))

]
, (7)

where λ is dual variable of RL agent.
1) Constrained Observation-Robust Policy Evaluation:

The action-value function Qπ(·) with adversarial observation
perturbations can be learned under a fixed policy iteratively,
starting from any action-value function Qπ(·) : S → R|A| and
repeatedly leveraging a modified Bellman backup operator T π
given via:

T πQπ(st) := r(st, at) + γE[V π(st+1)], (8)

where

E[V π(st+1)] = π(st+1)ᵀ[Qπ(st+1)− λc(s, s′,∆∗)] (9)

is the expected value function with adversarial observation
perturbations. Since the policy model outputs the discrete
action distribution, the expectation of value function V π(·)
can be calculcated directly.

To speed up training, COR-AC algorithm adopts two pa-
rameterized action-value functions with network parameters
φz , z ∈ {1, 2}. The action-value function parameters can be
updated via minimizing the following loss function of critic
network:

Jc(φ
z) = E

at+1∼π
Ts∼D

[
‖yt −Qπ(st;φ

z)‖22
]
, (10)

where Ts represents transition sampled from replay buffer D,
and yt is the target value of the action-value function in the
time step t. To avoid overestimating the value function, the
smaller one of two Qπ(·) values is used to train critic network.
With Eq. (8) and Eq. (9), yt can be defined as:

yt = r(st, at) + γπ(st+1)ᵀ
[

min
z∈{1,2}

Q̂π(st+1; φ̄z)

− λc(s, s′,∆∗)
]
, (11)

where Q̂π(·) is the target action-value function, and φ̄z is the
network parameter of the target action-value function. The
network parameters of target action-value function can be
updated once per parameterized action-value function update
via polyak averaging:

φ̄z ← ρφ̄z + (1− ρ)φz, (12)

where ρ is a hyperparameter between 0 and 1.

2) Constrained Observation-Robust Policy Improvement:
In COR-PI, policy improvement designates optimizing and
updating the policies of RL agent. The RL agent attempts
to maximize the expected return of the policy while satisfying
the nonlinear constraint c(·).

With Eq. (7), the Lagrange dual function can be written as:

L̄(λ) = max
π

L(π, λ) (13)

= max
π

E

[
T∑
t=0

γtr(st, at) + λ(ε− c(s, s′,∆∗))

]
.

Furthermore, the Lagrange dual problem associated with the
problem (6) can be represented as:

min
λ≥0

L̄(λ) = min
λ≥0

max
π

L(π, λ) (14)

= min
λ≥0

max
π

E

[
T∑
t=0

γtr(st, at) + λ(ε− c(s, s′,∆∗))

]
.

The optimal policy π∗ and the optimal dual variable λ∗ can
be approximated iteratively. First given a fixed λ, then solve
the best policy π∗ by maximizing L(π, λ). Moreover, plug in
π∗ and find λ∗ via minimizing L(π∗, λ). Therefore, with Eq.
(14), the following expressions can be derived:

π∗ = arg max
π

L(π, λ), (15)

λ∗ = arg min
λ≥0

L(π∗, λ). (16)

The value function V π(·) is implicitly defined through
the action-value function Qπ(·) and the policy π(·) and the
constraint c(·). With the double Q(·) trick in Eq. (11), Eq.
(9) and Eq. (15), the policy model parameters θ can be
optimized via maximizing the following objective function of
actor network:

Ja(θ) = E
at∼π
Ts∼D

[
π(st; θ)

ᵀ[ min
z∈{1,2}

Qπ(st;φ
z)− λc(s, s′,∆∗))]

]
.

(17)
Additionally, with Eq. (16), the dual variables can be

updated via minimizing the following loss function:

Jd(λ) = E
at∼π
Ts∼D

[
π(st; θ)

ᵀ[λ(ε− c(s, s′,∆∗)]
]
. (18)

IV. ALGORITHM IMPLEMENTATION

Algorithm 2 outlines the proposed OARL method in detail.
dt is done signal, and dt indicates whether the ego vehicle
has collided at the time step t. The proposed method can
optimize autonomous driving RL agent via the following
main procedure. The initial the network parameters of actor
and critic are sampled from a random distribution. In each
iteration, RL agent first need to collect the data of M timesteps
and store them in buffer D. Environment contains the state
transition probability and the reward functions to generate
the data trajectories. The optimal adversarial observation per-
turbations ∆∗ are found by the black-box attack based on
Bayesian optimization. Then the policies of RL agent is
updated iteratively.

When the vehicle in front is close and driving slowly, the
ego vehicle will perform lane change maneuvers to ensure
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Algorithm 2 Observation Adversarial Reinforcement Learning
1: Initialize actor network parameters θ, critic network parameters
φ1 and φ2.

2: Initialize target action-value function network parameters φ̄1 ←
φ1, and φ̄2 ← φ2.

3: Initialize dual variables λ and an empty replay buffer D.
4: for iteration step n = 1, 2, . . .N do
5: Reset state s0.
6: for timestep in the environment t = 1, 2, . . .M do
7: Select action based on the policy: at ∼ πθ(at|st).
8: Sample transition from the environment:

st+1, rt, dt ∼ p(st+1|st, at).
9: Store the transition in the replay buffer:

D ← D ∪ {(st, at, rt, st+1, dt)}.
10: end for
11: Sample a batch of transitions from replay buffer D.
12: Generate the optimal adversarial observation perturbations

through Algorithm 1:

∆∗ ←

{
max E[c(s, s′,∆)],

s.t.
∣∣∆m −∆0

m

∣∣ ≤ δm, ∣∣∆a −∆0
a

∣∣ ≤ δa.
13: Update the actor network parameters through Eq. (17):

θ ← ∇θJa(θ).
14: Update the critic network parameters through Eq. (10):

φ1 ← ∇φ1Jc(φ
1), φ2 ← ∇φ2Jc(φ

2).
15: Update the dual variables through Eq. (18):

λ← ∇λJd(λ).
16: Update the target action-value function network parameters

through Eq. (12):
φ̄1 ← ρφ̄1 + (1− ρ)φ1, φ̄2 ← ρφ̄2 + (1− ρ)φ2.

17: end for

Fig. 2. Illustration of states of the OARL based autonomous driving agent.

transportation efficiency. Moreover, to implement robust lane
change decision-making scheme based on OARL, the state,
action and reward of autonomous driving RL agent needs to
be defined.

We select the relevant states of the six nearest social vehicles
on the lane the ego vehicle is located and on the lanes on both
sides of the ego vehicle as the observations of the ego vehicle.
When the X-axis distance of the social vehicles on the left or
right of the ego vehicle are greater than or equal to the one
of the ego vehicle, we consider these social vehicles as left
front vehicles or right front vehicles, and vice versa. The state
of the autonomous driving agent includes 16 dimensions, and
the detailed description is provided in Fig. 2 and Table I. The
social vehicles perform lane change maneuvers by the LC2013
model [30] during the training and testing for the RL agent.

Moreover, the action of autonomous driving RL agent is
discrete, which includes lane keeping, left lane changing and

Algorithm 3 Reward Function Design for RL Agent
Input: State and action of RL agent.

1: r(·) = v0/35. . Encourage agent to be more efficiency
2: if d1 < 30 then
3: r(·) = r(·)− 0.1. . Encourage lane change behavior
4: end if
5: if |3.14 · ω0/180| > k · µ̄ · g/v0 and v0 > 30 then
6: r(·) = r(·)− 0.05. . Penalize dynamics instability
7: end if
8: if Vehicle changes lane and v0 > 20 then
9: r(·) = r(·)− v0/350. . Penalize high-speed lane change

10: end if
11: if Collision occurs then
12: r(·) = r(·)− 0.1. . Penalize collision
13: end if
Output: r(·)

TABLE I
STATE OBSERVED BY AUTONOMOUS DRIVING RL AGENT.

Parameters (Unit) Definition

a0 (m/s2) Longitudinal acceleration of autonomous vehicle
ω0 (rad/s) Yaw rate of autonomous vehicle
v0 (m/s) Velocity of autonomous vehicle
v1 (m/s) Velocity of vehicle in front in same lane
d1 (m) Distance from vehicle in front in same lane
v2 (m/s) Velocity of vehicle behind in same lane
d2 (m) Distance from vehicle behind in same lane
v3 (m/s) Velocity of vehicle in front in left lane
d3 (m) Distance from vehicle in front in left lane
v4 (m/s) Velocity of vehicle behind in left lane
d4 (m) Distance from vehicle behind in left lane
v5 (m/s) Velocity of vehicle in front in right lane
d5 (m) Distance from vehicle in front in right lane
v6 (m/s) Velocity of vehicle behind in right lane
d6 (m) Distance of vehicle behind in right lane
lindex Index of lane in which autonomous vehicle is located

right lane changing.
One challenge of this work is to learn the robust lane

change policies from scratch with no prior knowledge being
applied. Therefore, the reward function plays a crucial role for
optimizing the polices of the autonomous driving RL agent.
Efficiency, comfort and safety are considered to design the
reward function.

To encourage the ego vehicle to enhance transport effi-
ciency, the reward function r(·) is designed as v0/35. This
means that the autonomous driving agent is able to increase
the reward by running at high speed. To avoid the ego vehicle
following the front vehicle all the time, if the distance between
the ego vehicle and the front vehicle is less than 30 meters,
the reward of the agent will be reduced by 0.1. In terms
of autonomous driving safety, both of collision and vehicle
dynamics stability are considered. According to the upper limit
for the desired yaw rate given in [38], if the yaw rate of the
ego vehicle exceeds the upper limit kµ̄g/v0, the reward of the
agent will be reduced by 0.05. k is dynamic factor proposed
in [39], µ̄ is adhesion coefficient, and g represents gravity
acceleration. Additionally, if the ego vehicle is involved in
a collision, the reward of the agent will be reduced by 0.1.
To avoid frequent lane changes at high speeds, when the
ego vehicle performs a lane change manoeuvre at a speed
of more than 20 m/s, the reward of the agent will be reduced
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Fig. 3. Schematic diagram of evaluation method using SUMO-based mixed traffic flow with a random number of vehicles.

by v0/350. Algorithm 3 describes the structure of the reward
function in detail.

The actor and critic networks are designed via a single fully
connected hidden layer, and the layer size is 128. All activation
functions in hidden layers are ReLU. The inputs and outputs
of the neural networks have 16 and 3 dimensions respectively.
The main hyperparameters of our algorithm are provided in
Table IV of Appendix.

V. TESTING RESULTS AND PERFORMANCE EVALUATION

A. Environment

The simulation test based on SUMO platform is imple-
mented to verify the performance of the proposed robust lane
change decision-making method for autonomous vehicle in
this section. We employ SUMO to create three stochastic
mixed traffic flows based on different densities in highway
scenarios.

Fig. 3 illustrates our evaluation scheme. P is adopted to
denote the probability of emitting a vehicle each second. Pn,
Pl and Ph are defined as the probabilities of emitting a vehicle
each second in mixed traffic flows based on normal, low and
high densities respectively. In addition, Pn, Pl and Ph are set
as 0.14, 0.035, 0.245 respectively. Our method and baseline
approaches is tested in both training and testing. The policy
models are trained and tested based on the mixed traffic flow
with normal density. Moreover, the mixed traffic flows with
low and high densities are only leveraged to evaluate the policy
models.

Fig. 4. Illustration of model evaluation scheme. The autonomous driving RL
agent observes the perturbed state s̃t rather than the state st in model testing.

As shown in Fig. 4, unlike the model training stage of
OARL, the autonomous driving RL agent observes the state

TABLE II
FINAL PERFORMANCE OF DIFFERENT ALGORITHMS IN MODEL

TRAINING.

Return Speed Collision Times

DQN 92.99 ± 11.31 20.84 ± 0.78 2.20 ± 1.46
PPO 111.03 ± 16.03 28.86 ± 1.75 4.20 ± 0.75
SAC 120.39 ± 15.73 24.92 ± 0.65 1.40 ± 1.35

OARL 121.36 ± 18.16 26.98 ± 1.36 1.20 ± 1.6

s̃t perturbed by Bayesian optimization based Black-box attack
rather than the state st in model testing.

B. Baseline

The DQN and PPO based autonomous driving lane change
decision making algorithms are implemented as classical
baseline methods. Additional, since soft actor-critic (SAC)
with discrete action [40] is state-of-the-art discrete action RL
algorithm, it is adopted as a state-of-the-art baseline scheme.

C. Evaluation

Fig. 5 demonstrates the performance of each algorithm dur-
ing training in the highway scenario based on stochastic mixed
traffic flow with normal density. The final performance of
different schemes is given in Table II. Bold number is the best
in each column of Table II. All the algorithms are evaluated
for five trials via different random seeds in stochastic mixed
traffic flow with normal density. The solid curve corresponds
to the mean and the shaded region represents the standard
deviation.

Fig. 5 and Table II shows that the robust lane change
decision making method based on OARL outperforms the
baseline schemes with a large margin, both in terms of the
learning efficiency and the final performance. We count the
average metrics over the final 2000 time steps (10 episodes ×
200 time steps). Moreover, the average return of one episode
is counted over the final 2000 time steps. It can be found
that OARL approach performs comparably to SAC method
and outperforms DQN and PPO schemes in term of the final
speed in stochastic mixed traffic flow with normal density.
For example, in contrast to DQN, PPO and SAC schemes,
OARL gains 31.52%, 9.31% and 0.83% improvements with
respect to the final return respectively. In addition, compared
with DQN, PPO and SAC methods, the collision safety of
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Fig. 5. Training curves obtained by DQN, PPO, SAC and OARL algorithms. (a): Average return; (b): Average speed; (c): Average collision times.

TABLE III
EVALUATION OF THE POLICIES TRAINED BY DIFFERENT ALGORITHMS IN THREE STOCHASTIC MIXED TRAFFIC FLOWS.

Environment Metric DQN PPO SAC OARL

Low Density

Return 155.81± 22.97 145.50± 13.84 169.47± 30.91 181.15± 7.62
Speed 28.99 ± 3.28 26.95 ± 2.00 31.48 ± 0.95 32.10 ± 1.08

Robustness (0.54± 0.12)× 10−3 (6.82± 1.27)× 10−3 (4.64± 3.36)× 10−3 (5.92± 3.68)× 10−5

Collision Times 0.25 ± 0.62 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Normal Density

Return 92.09± 27.67 113.63± 10.49 128.72± 19.76 134.11± 13.46
Speed 24.95 ± 2.82 22.19 ± 1.49 26.29 ± 1.77 26.14 ± 1.10

Robustness (0.53± 0.11)× 10−3 (6.54± 1.51)× 10−3 (1.20± 1.00)× 10−3 (6.83± 2.28)× 10−5

Collision Times 2.50 ± 2.06 0.30 ± 0.64 0.70 ± 1.14 0.55 ± 0.86

High Density

Return 28.02± 16.11 86.84± 9.50 92.75± 26.64 100.78± 12.56
Speed 18.08 ± 4.60 19.16 ± 0.99 23.72 ± 1.62 22.97 ± 1.23

Robustness (7.86± 2.68)× 10−3 (1.87± 0.27)× 10−2 (4.04± 2.18)× 10−3 (7.34± 2.39)× 10−5

Collision Times 6.05 ± 2.73 1.80 ± 1.21 1.80 ± 1.57 1.40 ± 1.15

OARL is enhanced by about 83.33%, 250.00% and 16.67%
respectively. It can be seen that, PPO is superior to OARL in
terms of the final driving speed. However, the collision safety
of PPO method is the worst.

Eq. 2 is utilized to measure the robustness of policy models
against adversarial observation perturbations. We evaluate the
final policy models trained by each methods with different
random seeds. Additionally, the average metrics are counted
over 40000 time steps (200 episodes × 200 time steps).
Table III shows the test results of different policy models.
The performance of OARL policies outperforms DQN, PPO
and SAC in three stochastic mixed traffic flows with differ-
ent densities, especially in terms of robustness metric. For
instance, in contrast to DQN, PPO and SAC policies, OARL
gains 16.25%, 24.83% and 7.10% improvements with respect
to return in mixed traffic flow with low density respectively.
Meanwhile, compared with DQN, PPO and SAC methods,
the traffic efficiency of OARL policies is improved by about
10.73%, 19.11% and 1.97% respectively. It can be inferred
that, to ensure the transport efficiency, the autonomous vehicle
based on OARL policies performs more lane changes to
overtake than one with the baseline scheme driving policies.
Additionally, the robustness metric of OARL policies almost
unchanged under adversarial observation perturbations.

In the stochastic mixed traffic flow scenario with normal
density, the average return of OARL policies outperforms one

of DQN, PPO and SAC policies. Hence, although each of
PPO and SAC policies has a metric which is superior to one
of OARL policies, OARL policies have better comprehensive
performance than the baseline policies.

In the stochastic mixed traffic flow scenario with high
density, OARL policies perform comparably to SAC policies
and outperforms DQN and PPO polices in term of trans-
port efficiency under adversarial observational perturbations.
Moreover, in contrast to DQN, PPO and SAC policies, OARL
gains 257.14%, 16.28% and 8.70% improvements with respect
to return respectively. Compared with DQN, PPO and SAC
policies, the collision safety of OARL policies is improved by
about 332.14%, 28.57% and 28.57% respectively. It is obvious
that the robustness of OARL policies against adversarial obser-
vation perturbations is superior to the one of DQN, PPO and
SAC policies. Hence, it can be seen that the proposed method
performs consistently in three different highway scenarios.

Furthermore, Fig. 6 visually shows the performance of
DQN, PPO, SAC and OARL policies in the stochastic mixed
traffic flows with low and high densities. it can be seen
that OARL policies outperform baseline policies with a large
margin, in term of return, robustness and collision safety.
Moreover, the performance and robustness of OARL policies
are scarcely influenced by adversarial observation pertur-
bations. This means that the proposed robust lane change
decision-making approach with OARL is able to improve
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Fig. 6. Evaluation results for DQN, PPO, SAC and OARL policy models. (a): Average return; (b): Average robustness metric; (c): Average collision times.

the performance and generalization of autonomous driving
RL agent while keeping the robustness of decision-making
behaviors against observation uncertainties.

D. Ablation

In this section, we evaluate the impact of the nonlinear
constraint on the performance of OARL agent. A scheme
called actor-critic (AC) is implemented by removing the items
associated with the constraint in OARL. AC and OARL
methods are assessed in stochastic mixed traffic flow with
normal density. Moreover, we train 5 different instances with
different random seeds.

As shown in Fig. 7, the proposed OARL algorithm outper-
forms AC scheme with a large margin, in terms of average
return. It can be found that AC algorithm fails to make
any progress during policy model training. Hence, we can
find two possible explanations for this phenomenon: (1) our
constraint setting is able to encourage RL agent to explore
and avoid falling into local optimum; (2) updating policy
gradients in more directions may be beneficial to improve
model performance.

Additionally, the performance of our OARL scheme with
double hidden layer based network (DHLN) is evaluated in
stochastic mixed traffic flow with normal density. It can be
seen from Fig. 7 that OARL with a single hidden layer
based neural network performs comparably to the OARL with
DHLN, in terms of average return.

Fig. 7. Evaluation results of ablation and comparative study.

VI. CONCLUSION

This paper introduces a novel OARL approach for robust
lane change decision making of autonomous vehicles. A COR-
MDP is presented to model lane change decision making
behaviors of autonomous vehicles under policy constraints
and observation uncertainties. Meanwhile, the black-box attack
technique with Bayesian optimization is implemented to find
the optimal adversarial observation perturbations efficiently.
Furthermore, a COR-AC algorithm is advanced to optimize
autonomous driving lane change policies while keeping the
variations of the policies attacked by the optimal adversarial
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observation perturbations within bounds.
The experiment results in three stochastic mixed traffic

flows with different densities demonstrate that the proposed
scheme can make lane change decisions robustly under ob-
servation uncertainties. In comparison with three baseline
methods, the policy models trained by the proposed algorithm
show superior generalization and robustness against adversar-
ial observational perturbations.

Future work involves to evaluate the robust lane change
decision making approach with OARL in more scenarios.
Moreover, OARL with continuous action will be investigated
to copy with longitudinal decision making problem of au-
tonomous vehicles.

APPENDIX

TABLE IV
THE MAIN HYPERPARAMETERS OF THE PROPOSED ALGORITHM.

Parameters Value Parameters Value

Decay factor λ 0.95 Adhesion coefficient µ̄ 0.90
Dynamic factor k 0.85 Learning rate of actor la 0.0001

Learning rate of dual lα 0.0005 Learning rate of critic lc 0.001
Scale coefficient ρ 0.995 Constraint threshold ε 0.0001

Reference value ∆0
m 1.00 Reference value ∆0

a 0.00
Desired bound δm 0.2 Desired bound δa 0.05
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