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Abstract—Machine learning (ML)-based methods are widely 

explored to predict the quality of transmission (QoT) of a 

lightpath, which is expected to reduce optical signal to noise ratio 

(OSNR) margin reserved for the lightpath and therefore improve 

the spectrum efficiency of an optical network. However, many 

studies conducting this prediction are often based on synthetic 

datasets or datasets obtained from laboratory. As such, these 

datasets may not be amply representative to cover the entire 

status space of a real optical network, which is often exposed in 

harsh environment. There are risks of failure when using these 

ML-based QoT prediction models. It is necessary to develop a 

mechanism that can guarantee the reliability of a lightpath service 

even if the prediction models fail. For this, we propose to take 

advantage of the conventional network protection techniques that 

are popularly implemented in an optical network and reuse their 

protection resources to also protect against such a type of failure. 

Based on the two representative protection techniques, i.e., 1+1 

dedicated path protection and shared backup path protection 

(SBPP), the performance of the proposed protection mechanism is 

evaluated by reserving different margins for the working and 

protection lightpaths. For 1+1 path protection, we find that the 

proposed mechanism can achieve a zero design-margin (D-margin) 

for a working lightpath thereby significantly improving network 

spectrum efficiency, while not scarifying the availability of 

lightpath services. For SBPP, we find that an optimal D-margin 

should be identified to balance the spectrum efficiency and service 

availability, and although not significant, the proposed 

mechanism can save an up to 0.5-dB D-margin for a working 

lightpath, while guaranteeing the service availability. 

 

Index Terms—Elastic optical network, OSNR margin, machine 

learning, QoT prediction model, 1+1 path protection, shared 

backup path protection, service availability 

 

 INTRODUCTION 

ccurate prediction of quality of transmission (QoT) of a 

lightpath is essential for optical network design. This can 

reduce QoT margin required for a lightpath and allocate 
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network resources more efficiently [2]. Different approaches 

have been proposed to estimate the QoT of a lightpath, among 

which two most representative are the exact nonlinear 

Schrödinger equation solver based on the split-step Fourier 

method [3] and the approximate analytical model based on the 

Gaussian noise (GN) model [4]. The former is more accurate 

but has a much higher computational complexity, thereby 

failing to provide a real-time QoT prediction. In contrast, the 

latter is simpler but less accurate, and therefore required to 

reserve more QoT margin to meet a predefined QoT threshold 

requirement [5]. To improve the accuracy of the QoT 

prediction and perform a fast prediction, machine learning 

(ML)-based approaches have been proposed and investigated 

recently [6-7]. They are verified to be accurate and can reduce 

the reserved QoT margins for some network scenarios. 

However, we note that many ML-based prediction models 

were constructed based on laboratory datasets, which are not 

general enough to representatively cover the status of various 

real networks. This is because in a real optical network, a 

lightpath may traverse different fiber spans, some are laid 

underground, some are hung on telephone poles, some are in 

extremely cold areas, and some are in hot areas. Moreover, 

fiber spans hung on telephone poles may be blown by strong 

winds, etc. Therefore, when these models are employed to 

predict the QoT of a lightpath in a real optical network, they 

may fail, and if the lightpath is provisioned based on these 

models, its availability cannot be guaranteed. As such, a 

mechanism is required to protect against the failure of the 

lightpath due to the inaccurate QoT prediction. For this, we 

specifically propose to take advantage of the conventional 

network protection techniques that are popularly implemented 

in an optical network, i.e., 1+1 dedicated path protection and 

shared backup path protection (SBPP), and reuse their 

protection resources to also protect against the failure of 

ML-based QoT prediction. Specifically, in the context of a pair 

of working and protection lightpaths, we employ the ML-based 

method to reserve a QoT margin for the working lightpath for 

better spectrum efficiency, and the traditional method to 

reserve a QoT margin for the protection lightpath such that the 

lightpath service can always be recovered when the working 

lightpath fails due to the failure of ML-based QoT prediction. 

Based on this benchmark scheme, we also consider other 

combinations: (1) both working and protection lightpaths 

employ the ML-based QoT prediction method, and (2) both 

working and protection lightpaths employ the traditional QoT 
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margin reservation method. The performance of all these 

schemes is evaluated and analyzed in terms of spectrum 

efficiency and lightpath service availability in the context of the 

routing and spectrum (RSA) assignment problem in an elastic 

optical network (EON). The main contributions of this study 

are as follows.  

First, we propose a protection mechanism to tackle the 

failure of ML-based QoT prediction, which can take advantage 

of the ML-based QoT prediction method to reduce the reserved 

margins while still guaranteeing the availability of provisioned 

lightpath services. To the best of our knowledge, this is the first 

effort in the literature to carry out such a kind of protection. 

Second, we develop a new model for estimating lightpath 

service availability, in which the failure probability of a 

lightpath service is calculated based on its reserved optical 

signal to noise ratio (OSNR) margin. Under different network 

protection techniques, we further identify the conditions of 

successfully establishing a lightpath service that can be 

immune to the QoT failure. 

Finally, we evaluate the performance of the proposed 

protection mechanism in terms of spectrum efficiency and 

lightpath service availability. We estimate how the ML-based 

QoT prediction can help improve network spectrum efficiency 

while guaranteeing required lightpath service availability.  

This paper is an extended version of a conference paper [1]. 

The following key aspects have been enhanced in the current 

paper. First, in addition to 1+1 path protection, we consider 

more efficient SBPP protection technique to implement the 

QoT failure protection. Second, we develop an analytical 

model to estimate the lightpath service availability when 

different OSNR margins are reserved for working and 

protection lightpaths, and the condition of successfully 

provisioning a reliable lightpath service is identified. Finally, 

more simulation studies are carried out and more results are 

reported and analyzed. 

The rest of this paper is organized as follows. Section II 

introduces related work on ML-based QoT prediction methods 

and network protection techniques. Section III describes two 

OSNR-margin-reservation methods, including the traditional 

reservation method and the ML-based QoT prediction method. 

Section IV uses examples to illustrate the protection 

mechanism for the QoT prediction failure. Section V elaborates 

on the analytical models for estimating lightpath service 

availability in the context of the proposed protection 

mechanism. We present and analyze the simulation results in 

Section VI and conclude the paper in Section VII.  

 RELATED WORK 

A. ML-based QoT Prediction 

In recent years, considerable studies have been conducted to 

employ ML techniques for lightpath QoT prediction. Rottondi 

et al. [7] investigated a machine-learning classifier to predict 

whether the QoT of a lightpath can meet a predefined threshold, 

which was verified to achieve a higher prediction accuracy. 

Morais and Pedro [8] compared different ML models for 

lightpath QoT prediction, including K-nearest neighbors 

(KNN), logistic regression, support vector machines (SVM), 

and artificial neural networks (ANN), and found that ANN 

performs best with an accuracy up to 99%. Gao et al. [9] 

developed an ANN-based multi-channel QoT predictor to 

evaluate lightpath Q-factors, which can perform accurately 

with a maximum error less than 0.06 dB. Similarly, by 

extending a heterogeneous ANN method, Yu et al. [10] 

proposed a transfer learning model to improve the accuracy of 

lightpath QoT prediction at a low complexity. Other studies on 

the ML-based lightpath QoT prediction can also be found in 

[11-14]. 

Meanwhile, research effort has been made to reduce QoT 

margin reserved for a lightpath such that more efficient 

spectrum utilization can be achieved [2,15]. Here, because the 

ML-based methods are expected to achieve more accurate 

lightpath QoT prediction, they are often employed to set 

margins for lightpaths. Seve et al. [16] proposed a generic 

learning process to predict QoT lightpath more accurately, 

which can reduce reserved margin for several dB. D’Amico et 

al. [17] employed a deep neural network to predict lightpath 

QoT, which helps reduce the reserved margin from 2.28 dB to 

0.15 dB. Similarly, Lu et al. [18] explored the potential benefit 

in expanding network capacity when a more accurate lightpath 

QoT predictor is employed to reduce the reserved margin. 

Although the ML-based models can predict lightpath QoT 

more accurately and therefore help reduce reserved QoT 

margins, the datasets used by these models are mainly from two 

sources, i.e., laboratory datasets and synthetic datasets [14]. For 

example, Gao et al. [9] collected datasets for ML from a 

563.4-km field-trial testbed. D’Amico et al. [17] collected 

datasets for ML from an optical line system (OLS) that 

cascades 11 erbium-doped fiber amplifiers (EDFAs). In 

addition, two popular simulation tools, i.e., E-Tool [7] and 

GNPy [19], were often employed to generate synthetic datasets. 

Note that E-Tool is a BER estimation tool, and GNPy is an 

open-source library, developed based on the generalized GN 

model. For example, Rottondi et al. [7] employed E-Tool to 

generate synthetic datasets based on different simulation 

parameters. Khan et al. [20] employed GNPy to generate 

synthetic datasets. Because the datasets are either from 

laboratories or synthetic, not from real optical networks, the 

ML-based QoT prediction models cannot guarantee its 

accuracy when used to predict the QoT of a lightpath 

provisioned in a real network. This is actually confirmed by 

several studies. For example, Fan et al. [18, 21] confirmed that 

the ML-based QoT prediction model becomes less stable with 

time because of system temporal drifts caused by temperature 

variations and other unpredictable factors. As a result, the 

prediction model may fail to predict the QoT of a lightpath and 

affect the availability of the lightpath. Therefore, for lightpath 

provisioning based on the ML-based QoT prediction model, we 

need to consider a protection mechanism against the failure of 

the prediction model.  

B. Network Protection Techniques 

Considerable studies have also been conducted for optical 

network protection. Depending on protection capacity sharing 
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capability, we may divide network protection into dedicated 

protection and shared protection [22]. Dedicated protection 

typically includes 1+1 (dedicated) path protection [23-25], ring 

protection [26, 27], etc. Shared protection typically includes 

span restoration (SR) [28], p-Cycles [29], shared backup path 

protection (SBPP) [30-33], path restoration (PR) [34], etc. 

Among these techniques, 1+1 path protection and SBPP are 

considered most promising due to their operational simplicity 

and efficiency in spare capacity sharing if sharable. Therefore, 

for the EON, extensive studies have focused on these two 

protection techniques. 

Based on 1+1 path protection, Klinkowski et al. [23] 

developed an integer linear programing (ILP) model and an 

adaptive frequency assignment (AFA) algorithm to solve the 

RSA problem in an EON. They also developed an evolutionary 

algorithm to find an optimal solution to the RSA problem in a 

survivable EON with 1+1 path protection [24]. As an extension 

to Klinkowski’s work, Goścień et al. [25] presented an ILP 

model to solve the RSA problem that jointly considers anycast 

and unicast lightpath services, and proposed a heuristic 

algorithm AFA-JAU-DPP to solve the problem. 

Based on SBPP, Shen et al. [31] formulated the RSA 

problem in an EON into an ILP model and showed that SBPP 

demonstrates better spare capacity efficiency than 1+1 path 

protection. Walkowiak et al. [32] proposed an AFA/SBPP 

algorithm for the RSA problem in an SBPP-protected EON and 

verified the efficiency of the proposed algorithm in comparison 

with other heuristic schemes. Also, to maximize spare capacity 

sharing among multiple protection lightpaths, Wang et al. [33] 

proposed a spectrum window plane (SWP) based algorithm for 

survivable lightpath service provisioning in a distance-adaptive 

EON, which achieves better performance than the conventional 

shortest and K-shortest path routing algorithms. 

C. Summary 

In summary, we note that, although extensive studies have 

been conducted to develop various ML-based QoT prediction 

models to reduce margin reserved for a lightpath, no studies 

have considered protecting lightpath services against the failure 

these models. Meanwhile, although extensive studies have been 

conducted for network protection, no studies have considered 

employing these techniques to protect lightpath services against 

the failure of these ML-based QoT prediction models. 

Therefore, to the best of our knowledge, this is the first work to 

employ the network protection techniques, i.e., 1+1 path 

protection and SBPP, to protect against such a kind of failure so 

as to guarantee the availability of lightpath services provisioned 

based on the ML-based techniques. 

 OSNR MARGIN RESERVATION 

When establishing a new lightpath, we need to first estimate 

its OSNR and then select the most efficient modulation format 

based on its OSNR and reserved margin. We next introduce the 

employed OSNR estimation model and two OSNR margin 

reservation methods: the traditional reservation method and the 

ML-based QoT prediction method. 

A. OSNR Estimation Model 

To evaluate the QoT of a lightpath, an OSNR estimation 

model is required, which generally considers two key 

impairments: amplified spontaneous emission (ASE) noise and 

non-linear interference (NLI). The equation for calculating the 

OSNR of a lightpath is as follows 

1

𝑂𝑆𝑁𝑅𝑙𝑖𝑔ℎ𝑡𝑝𝑎𝑡ℎ
= ∑

𝑃𝐴𝑆𝐸
𝑖 +𝑃𝑁𝐿𝐼

𝑖

𝑃𝑐ℎ

𝑁𝑙−1
𝑖=0   (1) 

Here, each link traversed by a lightpath is assumed to be 

transparent and homogenous, i.e., the link consists of identical 

amplification spans and the loss of each span is exactly 

compensated by each optical amplifier. 𝑃𝑐ℎ is the launch power 

of the lightpath. 𝑃𝐴𝑆𝐸
𝑖  is the power of ASE noise accumulated 

by all the optical amplifiers on the 𝑖𝑡ℎ  fiber link along the 

lightpath. 𝑃𝑁𝐿𝐼
𝑖  is the cumulative NLI power on the 𝑖𝑡ℎ  fiber 

link. 𝑁𝑙 is the number of links traversed by the lightpath.  

To calculate the ASE noise, we first find noise figure (NF) 

for each amplifier by looking up a gain-NF table, pre-built 

based on different amplifier types. As in [35], we specifically 

consider two types of erbium doped fiber amplifiers (EDFAs) 

whose maximum gains are 15 dB and 22 dB, respectively. We 

select the amplifier type based on a required gain, which can 

just compensate loss accumulated before the amplifier. 

Specifically, if the required gain is below 15 dB, we select a 

15-dB EDFA because it has a lower NF; otherwise, we select a 

22-dB EDFA. After deciding the amplifier type, we use the 

gain-NF table to find an NF based on the required gain. Finally, 

we employ Eqs. (1) and (2) in [35] to calculate the ASE noise 

accumulated by all the EDFAs on a fiber link. 

For the NLI power, we implement an exact Gaussian-noise 

(GN) model as in GNPy [19] with an analytical approximation 

[4], in which only self-channel interference (SCI) and 

cross-channel interference (XCI) are considered, with 

multi-channel interference neglected. Under the assumptions of 

incoherent accumulation of NLI noise and lumped 

amplification of optical amplifiers, we employ Eqs. (120) and 

(121) in [36] to calculate the NLI power accumulated along a 

traversed fiber link. This approximate model has been verified 

to be accurate with a computational complexity compatible to 

real-time network operation [4]. 

B. OSNR Margin Reservation 

Different types of OSNR margins need to be reserved for a 

lightpath, including system margin (S-margin), unallocated 

margin (U-margin), and design margin (D-margin) [2]. The 

S-margin accounts for time-varying network operating 

conditions, including fast time-varying impairments (e.g., 

polarization effects) and slow time-varying impairments (e.g., 

additional nonlinearities and network equipment aging). The 

U-margin is referred to as the difference of capacity/reach 

between the demand and the discrete data rate/reach granularity 

offered by commercial transmission equipment. The D-margin 

is the difference between the planned beginning of life (BoL) 

value and the real value of the quality metric, which is due to 

the inaccuracy of the design tool used to evaluate the QoT of a 

lightpath during network planning. With these margins 
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reserved, optical communication infrastructure can ensure all 

the lightpaths to maintain acceptable QoTs until the end of their 

lives.  

 
Fig. 1. Different OSNR margins reserved for a lightpath. BoL: beginning of 

life; EoL: end of life. 

 
Fig. 2. Failure probabilities under different consumable margins. 

As shown in Fig. 1, at the BoL of a lightpath, the actual 

OSNR is the sum of a forward error correction (FEC) limit and 

the total margin reserved, including the S-margin, the D-margin, 

and the U-margin. In this study, the FEC limit is set to be the 

OSNR threshold, above which the lightpath signal is deemed 

recoverable “error-free.” This setting can ensure the lightpath 

with the best transmission quality and therefore the probability 

of failing to meet the OSNR threshold is the lowest. However, 

with time going, the signal quality of a lightpath will gradually 

deteriorate due to slow time-varying impairments. When 

approaching its end of life (EoL), the actual OSNR of a 

lightpath may be lower than the sum of the FEC limit and the 

fast time-varying system margin. If this occurs, then the 

lightpath will fail in data transmission. 

We define the difference between the margins at the BoL and 

at the EoL as the consumable margin (CM), which is the sum of 

all the margins 𝑇𝑚𝑎𝑟𝑔𝑖𝑛 excluding the fast time-varying system 

effect 𝐹𝑚𝑎𝑟𝑔𝑖𝑛 , i.e., 𝐶𝑀 = 𝑇𝑚𝑎𝑟𝑔𝑖𝑛 − 𝐹𝑚𝑎𝑟𝑔𝑖𝑛 . Based on this 

CM, we can estimate the failure probability of the lightpath 

based on a Gaussian distribution model shown in Fig. 2. It is 

evident that when the CM is large (e.g., greater than 8.0 dB), 

the failure probability of the lightpath (i.e., the shadow area, 

which is the integral of the failure probability function) is low, 

close to zero, while when the CM margin is small (e.g., close to 

0 dB), the failure probability of the lightpath is high, close to 

one. 

C. Margin Setting 

 Based on the above different margins, we next describe two 

margin reservation methods: the traditional method and the 

ML-based QoT prediction method. 

1) Traditional method 

In this method, the traditional OSNR estimation model 

introduced in Section III. A is employed to predict the OSNR of 

a lightpath, in which the D-margin is reserved to guarantee the 

QoT of a lightpath to be higher than a predefined threshold [5]. 

Table I shows typical margin settings in the traditional method, 

in which a 2-dB D-margin is reserved at the BoL. In addition, to 

guarantee the reliability of a lightpath service over the full 

network life, the S-margin is reserved. For example, as in [2], 

we may reserve a 0.4-dB, 2-dB, and 2.3-dB OSNR margin for 

the fast time-varying effect, the additional nonlinearity, and the 

slow aging impairment, respectively, which corresponds to a 

total 4.7-dB S-margin at the BoL.  

Considering the S and D-margins (i.e., 6.7-dB) at the BoL of 

a lightpath, we can select the most efficient modulation format 

according to the following inequation. 

𝐹𝐸𝐶𝑙𝑖𝑚𝑖𝑡 ≤ 𝑂𝑆𝑁𝑅𝑙𝑖𝑔ℎ𝑡𝑝𝑎𝑡ℎ − 𝐷𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑆𝑚𝑎𝑟𝑔𝑖𝑛 =

𝑂𝑆𝑁𝑅𝑙𝑖𝑔ℎ𝑡𝑝𝑎𝑡ℎ − 6.7 𝑑𝐵  
(2) 

where 𝐹𝐸𝐶𝑙𝑖𝑚𝑖𝑡  is the OSNR threshold required by the selected 

modulation format. Because a fiber-optic transmission system 

often has discrete data rate/reach granularities as shown in 

Table II, where the spectrum efficiency of each modulation 

format is discrete, there exists the difference of capacity/reach 

between the demand and the really offered by the system. Thus, 

after selecting the modulation format for each lightpath, we can 

further calculate its U-margin as follows.  

𝑈𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑂𝑆𝑁𝑅𝑙𝑖𝑔ℎ𝑡𝑝𝑎𝑡ℎ − 6.7 𝑑𝐵 − 𝐹𝐸𝐶𝑙𝑖𝑚𝑖𝑡  (3) 

 With all the margins determined, we can finally calculate the 

consumable margin of the traditional method, which is the 

difference between margins at the BoL and EoL. Here, as in 

Section III. B, the CM is calculated as 𝐶𝑀 = 𝑇𝑚𝑎𝑟𝑔𝑖𝑛 −

𝐹𝑚𝑎𝑟𝑔𝑖𝑛 = 6.7 𝑑𝐵 + 𝑈𝑚𝑎𝑟𝑔𝑖𝑛 − 0.4 𝑑𝐵 = 6.3 𝑑𝐵 + 𝑈𝑚𝑎𝑟𝑔𝑖𝑛 . 

Based on the found CM, we can further estimate the failure 

probability of the lightpath using the curve in Fig. 2.  

Time

QoT (OSNR)

Failure

FEC limit 

D-margin

BoL EoL

FEC limit + 
fast time-varying 
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TABLE I 

MARGIN SETTING BY THE TRADITIONAL METHOD [2]. 

S-margin 

Fast time-varying effect 

(𝐹𝑚𝑎𝑟𝑔𝑖𝑛) 
0.4 dB 

Additional nonlinearity 2 dB 

Slow aging impairment 2.3 dB 

D-margin 2 dB 

U-margin 𝑂𝑆𝑁𝑅𝑙𝑖𝑔ℎ𝑡𝑝𝑎𝑡ℎ − 6.7 𝑑𝐵 − 𝐹𝐸𝐶𝑙𝑖𝑚𝑖𝑡 

 
TABLE II 

SPECTRUM EFFICIENCIES AND OSNR THRESHOLDS OF 

DIFFERENT MODULATION FORMATS [37]. 

Modulation 

format 

Spectrum efficiency 

(bit/s/Hz) 

FEC limit 

 (dB) 

PM-BPSK 2 5.41 

PM-QPSK 4 8.38 

PM-8QAM 6 12.43 

PM-16QAM 8 15.13 

PM-32QAM 10 18.11 

PM-64QAM 12 21.08 
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2) ML-based QoT prediction 

In this method, we employ the ML-based model to predict 

the OSNR of a lightpath. To build an accurate QoT prediction 

model, we need massive data for training. Because of difficulty 

in collecting massive real-network data, we simulate to 

generate the data, in which the OSNRs of all the routes are 

estimated based on the OSNR estimation model in Section III. 

A. Specifically, for the ASE noise, since the NF values were 

obtained from real amplifiers, the data calculated based on the 

model is considered accurate. However, due to the inaccuracy 

in estimating NLI noise, we add an estimation error, which 

follows a Gaussian distribution within the range of 0.3 dB [4]. 

This error can simulate the statistical feature of a network and 

therefore can increase the accuracy of the NLI noise. We use 

the simulated data as training data to obtain the ML-based QoT 

prediction model. Note that although we employ simulation 

data for this study, it does not affect its effectiveness since we 

can always use the actual system data to replace the simulated 

data if sufficient actual system data can be obtained. 

We employ an artificial neural network (ANN) in [38] to 

train the ML-based QoT prediction model. This ANN consists 

of an input layer, a hidden layer, and an output layer. In the 

input layer, we configure seven neurons, which respectively 

correspond to the following seven lightpath features: (1) the 

total number of traversed hops, (2) total length, (3) the length of 

the longest link, (4) total ASE noise, (5) total NLI noise, (6) the 

number of traversed 15-dB EDFAs, (7) the number of traversed 

22-dB EDFAs. In the hidden layer, we configure 10 neurons, 

each of which uses a rectified linear unit (ReLU) function. In 

the output layer, the output neuron represents the predicted 

OSNR value of a lightpath and its activation is a linear function. 

By training the ANN, we obtain an ML-based QoT prediction 

model and use it to predict lightpath OSNR.  

The ML-based QoT prediction is expected to predict 

lightpath QoT more accurately, and therefore significantly 

reduce the reserved D-margin. In this study, we set the 

D-margin to be zero. In addition, following the traditional 

method, we still set the S-margin to be 4.7 dB at the BoL. Based 

on a predicted lightpath OSNR and the reserved S-margin, we 

can select an efficient modulation format using the following 

equation.  

𝐹𝐸𝐶𝑙𝑖𝑚𝑖𝑡 + 𝑈𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑂𝑆𝑁𝑅𝑙𝑖𝑔ℎ𝑡𝑝𝑎𝑡ℎ − 4.7 𝑑𝐵 (4) 

 Next, considering a 0.4-dB 𝐹𝑚𝑎𝑟𝑔𝑖𝑛, the consumable margin 

can be further calculated as 𝐶𝑀 = 𝑇𝑚𝑎𝑟𝑔𝑖𝑛 − 𝐹𝑚𝑎𝑟𝑔𝑖𝑛 =

4.7 𝑑𝐵 + 𝑈𝑚𝑎𝑟𝑔𝑖𝑛 − 0.4 𝑑𝐵 = 4.3 𝑑𝐵 + 𝑈𝑚𝑎𝑟𝑔𝑖𝑛 . Based on 

this CM at the BoL, we can further estimate the failure 

probability of the lightpath according to the curve in Fig. 2. 

We make a brief comparison between the two margin 

reservation methods. Due to the 2-dB D-margin reservation, the 

traditional method increases the CM, resulting in a lower 

lightpath failure probability. However, this method consumes 

more spectrum resources. In contrast, without the D-margin 

reservation, the ML-based QoT prediction method can 

efficiently use spectrum resources. However, due to a smaller 

CM, the failure probability of a lightpath significantly 

increases.  

 MECHANISMS FOR PROTECTING AGAINST FAILURE OF 

ML-BASED QOT PREDICTION 

A. Protection Mechanisms 

As the ML-based QoT prediction method does not reserve 

the D-margin, a lower margin is reserved for each lightpath 

compared to the traditional method. This enables the ML-based 

method to adopt more advanced modulation formats given the 

same FEC limits. However, as a disadvantage, the reduction of 

the reserved margin can degrade the availability of a lightpath 

(according to Fig. 2). In case that a lightpath fails to meet its 

required OSNR, its data transmission will be affected. 

Therefore, a protection mechanism is required to protect 

against this type of failure. In this study, we propose to employ 

the traditional network protection technique to pre-plan a 

backup lightpath, which however reserves its OSNR margin 

based on the traditional method. With this protection lightpath, 

we can always recover a working lightpath when it fails to meet 

its required OSNR. We specifically employ 1+1 path protection 

and SBPP as two protection techniques for this study. Different 

from the conventional network protection, while ensuring 

lightpath service recovery in case of working lightpath failure, 

the proposed scheme needs to reserve a lower margin by 

applying the ML-based QoT prediction method for the working 

lightpath, thereby improving spectrum resource utilization. 

Fig. 3 shows examples based on the two network protection 

techniques against the failure of ML-based QoT prediction. We 

assume that between node pairs (A, B) and (A, E), there are a 

180-Gb/s traffic demand and a 220-Gb/s traffic demand, 

respectively. Table III summarizes how much network resource 

is required and how the failure probability will be under the 

different margin reservation methods and the different network 

protection techniques. 

In Fig. 3, for the first lightpath service, we employ the 

shortest route (A-B) to establish its working lightpath and the 

TABLE III  

EXAMPLES FOR THE TWO PROTECTION TECHNIQUES 

 

Working lightpath Protection lightpath 

Traditional margin reservation method ML-based QoT prediction method Traditional margin reservation method 

Number of FSs used Failure probability Number of FSs used Failure probability Number of FSs used Failure probability 

Lightpath service 1 

(A, B) 
3 0% 2 7% 4 0% 

Lightpath service 2 

(A, E) 
5 0% 3 15% 5 0% 

1+1 path protection 9 FSs reserved on the link (A-C) 

SBPP 5 FSs reserved on the link (A-C) 
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OSNR estimation model to find its OSNR as 21.1 dB (for 

example). If the traditional margin reservation method is 

employed, we need to reserve both the S and D-margins. Then 

according to Eq. (2), we can find 𝐹𝐸𝐶𝑙𝑖𝑚𝑖𝑡 + 𝑈𝑚𝑎𝑟𝑔𝑖𝑛 ≤

14.4 𝑑𝐵, and according to Table II, we select the modulation 

format 8-QAM. This modulation format requires to reserve 3 

FSs on link (A-B) so as to fully carry the traffic demand. Under 

this configuration, the U-margin of the lightpath can be 

calculated as 14.4 − 12.43 = 1.97 𝑑𝐵 , which can further 

derive the total margin 𝑇𝑚𝑎𝑟𝑔𝑖𝑛  of the lightpath to be 8.67 dB. 

This corresponds to an 8.27-dB CM with a 0.4-dB fast 

time-varying system margin. According to Fig. 2, it is easy to 

find that the failure probability of this working lightpath is 

close to 0 at the BoL. 

As a comparison, if we employ the ML-based QoT 

prediction method, the OSNR of working lightpath (A-B) can 

be predicted to be 21.03 dB (for example). Since in this method, 

the D-margin is no longer reserved, there is only a 4.7-dB 

S-margin. According to (4), we can find 𝐹𝐸𝐶𝑙𝑖𝑚𝑖𝑡 + 𝑈𝑚𝑎𝑟𝑔𝑖𝑛 =

16.33 𝑑𝐵 . Then, according to Table II, we can select the 

modulation format 16-QAM for this lightpath and 2 FSs should 

be reserved on link (A-B). Under this configuration, the 

U-margin can be calculated as 16.33 − 15.13 = 1.2 𝑑𝐵, which 

can further derive a total margin 𝑇𝑚𝑎𝑟𝑔𝑖𝑛 = 5.9 𝑑𝐵 . This 

corresponds to a 5.5-dB CM. According to Fig. 2, we can find 

that the failure probability of this working lightpath is close to 7% 

at the BoL.  

 
(a) 1+1 path protection 

 
(b) SBPP 

Fig. 3. Examples of protecting against failure of ML-based QoT prediction. 

The same calculation can be conducted for the second 

lightpath service between the node pair (A, E). The number of 

FSs used and the failure probability of the working lightpath are 

shown in Table III for the two margin reservation methods, 

respectively. It is noted that for both lightpath services, the 

failure probability of the ML-based QoT prediction method is 

significantly higher than that of the traditional method although 

the former uses less spectrum resource. Therefore, we need to 

establish a protection lightpath to improve the availability of 

the lightpath services. For the protection lightpath, we employ 

the traditional method to reserve the OSNR margin such that 

there is always a reliable protection lightpath even if the 

working lightpath fails in its OSNR. In Fig. 3, we also show 

examples of setting up protection lightpaths under 1+1 path 

protection and SBPP techniques. The traditional margin 

reservation method is employed for guaranteed availability. 

Table III shows the numbers of FSs used and the failure 

probabilities of the protection lightpaths under the two 

protection techniques. Because of spare capacity sharing, SBPP 

uses fewer FSs on link (A-C) than 1+1 path protection, i.e., 5 vs. 

9.  

The advantage of combining the two margin reservation 

methods for the working and protection lightpaths is as follow. 

In the most time when there is no OSNR failure, we can enjoy 

efficient spectrum utilization of the working lightpath provided 

by the ML-based QoT prediction method, thereby improving 

network resource utilization. Meanwhile, to tackle the issue of 

insufficient availability due to the ML-based QoT prediction 

method, we reserve spectrum resource for a protection lightpath 

in a conservative way such that the lightpath service will be 

always available even if the working lightpath incurs a failure 

of OSNR prediction. Therefore, the proposed scheme can not 

only enjoy the high spectrum efficiency of working lightpaths, 

but also ensure the availability of lightpath services. 

B. Estimating Availability of a Protected Lightpath Service 

 To protect against the failure of the ML-based QoT 

prediction, we consider the two protection techniques, i.e., 1+1 

path protection and SBPP. These two techniques can achieve 

different availabilities for each lightpath service in case of 

lightpath QoT failure1. Next, we describe how to calculate the 

lightpath service availability under these two protection 

techniques. 

Under 1+1 path protection, both working and protection 

lightpaths are assigned with dedicated spectrum resource. 

When a working lightpath fails, its corresponding protection 

lightpath immediately restores affected traffic demand. Thus, 

for lightpath service A, its availability considering the 

availability of either working or protection lightpath 𝛶 can be 

calculated as 

𝛶 = (1 − 𝑃𝑤
𝐴) + 𝑃𝑤

𝐴 ∙ (1 − 𝑃𝑝
𝐴) = 1 − 𝑃𝑤

𝐴 ∙ 𝑃𝑝
𝐴 (5) 

 

 
1 Note that in this study, we do not consider service unavailability due to 

link/node failures, but focus on unavailability due to lightpath QoT failure.  
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where 𝑃𝑤
𝐴  and 𝑃𝑝

𝐴  are the failure probabilities of the working 

and protection lightpaths of service A, respectively. 

Under SBPP, the availability of a lightpath service needs to 

consider not only its own working and protection lightpaths, 

but also the availability of the other lightpath services that share 

common links with the current lightpath service. Here, we 

assume that the set of lightpath services that share links with 

lightpath service A is ℛ{𝐵1, 𝐵2 ∙∙∙ 𝐵𝑛} . According to SBPP, 

only when the working lightpaths of all the services in ℛ are in 

the state of success, the spectrum resource of the protection 

lightpath of A can be used to recover the failure of the working 

lightpath of A. Therefore, the availability 𝛶  of the current 

lightpath service can be calculated as 

𝛶 = (1 − 𝑃𝑤
𝐴) + 𝑃𝑤

𝐴 ∙ (1 − 𝑃𝑝
𝐴) ∙ (1 − 𝑃𝑤

𝐵1) ∙

(1 − 𝑃𝑤
𝐵2) ∙∙∙ (1 − 𝑃𝑤

𝐵𝑛)  
(6) 

where 𝑃𝑤
𝐵𝑖  is the failure probability of the working lightpath of 

the 𝑖𝑡ℎ lightpath service in ℛ. 

TABLE IV 

EXAMPLES OF LIGHTPATH SERVICE AVAILABILITY UNDER TWO 

PROTECTION MECHANISMS 

Lightpath services 
Service 1  

(A, B) 

Service 2  

(A, E) 

Failure 

probability 

Working lightpath 7% 15% 

Protection lightpath 0% 0% 

Availability 
1+1 path protection 100% 100% 

SBPP 94.05% 86.05% 

For the examples in Section IV. A, we use the above 

availability estimation model to calculate the availabilities of 

different lightpath services, which are shown in Table IV. We 

first consider lightpath service 1. Under 1+1 path protection, 

the failure probabilities of its working and protection lightpaths 

are 7% and zero at the BoL, respectively. Therefore, according 

to (5), the availability of this lightpath service is 100% at the 

BoL. Similarly, for lightpath service 2, we can also find that its 

availability is 100% at the BoL. In contrast, under SBPP, we 

use (6) to calculate the availability of lightpath service 1, which 

is 94.05% when considering the failure probability of working 

lightpath 2. Similarly, this availability for lightpath service 2 is 

86.05% when considering the failure probability of working 

lightpath 1. It is evident that 1+1 path protection can achieve a 

higher service availability than SBPP while the latter can 

achieve a more efficient spectrum utilization.  

 SIMULATIONS AND PERFORMANCE ANALYSES 

To evaluate the performance of the proposed protection 

mechanism against the failure of ML-based QoT prediction, we 

consider two test networks, the 14-node, 21-link NSFNET 

network and 24-node, 43-link USNET network (shown in Fig. 

4). There are 320 FSs on each fiber link in both test networks. 

The bandwidth granularity of each FS is assumed to be 12.5 

GHz, and six modulation formats (i.e., BPSK, QPSK, 8-QAM, 

16-QAM, 32-QAM, and 64-QAM) are used for working and 

protection lightpath establishment. A static traffic demand is 

also assumed, where the traffic demand between each node pair 

is assumed to be uniformly distributed in the range of [100, X] 

Gb/s, where X is the maximum traffic demand. In this study, we 

set X to be 600 and 200 for NSFNET and USNET, respectively. 

In addition, according to our previous studies, the performance 

of a service provisioning algorithm is closely related to the 

sequence of served demands [35, 39]. Therefore, we shuffle the 

list of lightpath services 200 times, and then for each shuffled 

lightpath service sequence, we run the service provisioning 

algorithm to find a result with minimum number of FSs used. 

 
(a) 14-node, 21-link NSFNET network 

 
(b) 24-node, 43-link USNET network 

Fig. 4. Two test networks. 

We employ the shortest path routing algorithm and the 

first-fit (FF) spectrum assignment strategy to establish a 

working lightpath. For the protection lightpath, we aim to 

maximize the spare capacity sharing efficiency especially for 

SBPP and therefore employ more efficient spectrum window 

plane (SWP)-based routing and spectrum assignment (RSA) 

algorithm [33, 39]. The routes of working and protection 

lightpaths must be link disjoint and their assigned spectra are 

subject to the constraints of spectrum continuity and spectrum 

contiguity [33].  

We consider three different lightpath establishment schemes. 

The first reserves OSNR margins for both working and 

protection lightpaths based on the traditional method, in which 

the D-margin is specially reserved. The second reserves the 

margin for the working lightpath based on the ML-based QoT 

prediction method, and for the protection lightpath based on the 

traditional method. The third reserves the margins for both 

working and protection lightpaths based on the ML-based QoT 

prediction method. 

A. Number of FSs Used 

We first compare the maximum number of FSs used for the 

three schemes under 1+1 protection and SBPP, respectively. 

Fig. 5 shows related results when all the lightpath services are 

provisioned, in which “W” represents the working lightpath, “P” 

represents the protection lightpath, “ML” represents the 

ML-based QoT prediction method, and “trad” represents the 

traditional method.  

Fig. 5 compares the results of the different schemes under 

1+1 path protection and SBPP. For the 1+1 path protection, we 

see that the scheme of “W: trad_P: trad” has the largest number 

of FSs used among the three schemes. This is because this 
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scheme reserves OSNR margins based on the traditional 

method for both working and protection lightpaths, thereby 

requiring more spectrum resources to accommodate traffic 

demands. In contrast, the scheme of “W: ML_P: ML” has the 

smallest number of FSs used. This is because this scheme 

employs the ML-based QoT prediction method for both 

working and protection lightpaths, and therefore, allocate 

spectrum resources most efficiently. Finally, the scheme of “W: 

ML_P: trad” falls in the middle because it employs the 

ML-based QoT prediction method for the working lightpath 

and the traditional margin reservation method for the protection 

lightpath. Moreover, comparing the schemes of “W: ML_P: 

ML” and “W: ML_P: trad,” we note that the differences in the 

number of FSs used seem not significant, which are 9.3% vs. 

10.0% and 13.3% vs. 15.7% reduction from the most 

conservative scheme for NSFNET and USNET, respectively.  

 
(a) NSFNET 

 
(b) USNET 

Fig. 5. Maximum numbers of FSs used under 1+1 path protection and SBPP. 

For SBPP, we note that like 1+1 path protection, the scheme 

of “W: trad_P: trad” still has the largest number of FSs used and 

the scheme of “W: ML_P: ML” has the smallest number of FSs 

used because larger OSNR margins need to consume more 

spectrum resources. The scheme of “W: ML_P: trad” falls in 

the middle, and its difference from “W: ML_P: ML” in the 

number of FSs used is however small, which are 14.3% vs. 18.0% 

and 16.2% vs. 19.9% reduction from the most conservative 

scheme for NSFNET and USNET, respectively. 

Finally, comparing the results of the two protection 

techniques, we see that SBPP always has a smaller number of 

FSs used than 1+1 path protection because of efficient spare 

capacity sharing. Specifically, for the scheme of “W: ML_P: 

trad,” the reductions are up to 29.8% and 10.8% for NSFNET 

and USNET, respectively. 

B. Service Availability  

We evaluate service availability for the three schemes under 

the two protection techniques. Here, we only focus on service 

unavailability due to the failure of ML-based QoT prediction, 

but do not consider service unavailability due to network 

node/link failure. The results are shown in Fig. 6, in which 

“1+1_W: trad_P: trad” corresponds to the scheme of “W: 

trad_P: trad” based on 1+1 path protection and “SBPP_W: 

trad_P: trad” correspond to the scheme of “W: trad_P: trad” 

based on SBPP. 

1) 1+1 path protection 

We first analyze the service availability of 1+1 path 

protection. We note that the scheme of “W: trad_P: trad” 

always achieves the highest service availability because it 

employs the traditional margin reservation method and 

therefore shows the highest availability of lightpaths. In 

contrast, because the scheme of “W: ML_P: ML” employs the 

most advanced ML-based prediction method and therefore 

reserves the lowest OSNR margin for the working and 

protection lightpaths, it demonstrates the lowest service 

availability. The scheme of “W: ML_P: trad” falls in the middle 

because although the working lightpath uses the “unreliable” 

ML-based QoT prediction method, the protection lightpath can 

still provide protection in case of failure and it reserves margins 

based on the traditional method. Moreover, under 1+1 path 

protection, although the schemes of “W: ML_P: trad” and “W: 

ML_P: ML” have close numbers of FSs used, the former 

achieves a much higher service availability than the latter. 

Specifically, in NSFNET, the reduction of service availability 

by “W: ML_P: ML” relative to “W: trad_P: trad” is up to 

74.5%, while such a reduction is only 16.3% by the scheme of 

“W: ML_P: trad.” Similarly, in USNET, these values are 65.1% 

vs. 21.9%, respectively. Thus, we can conclude that the 

mechanism of protecting against the failure of ML-based QoT 

prediction by establishing a dedicated protection lightpath 

based on the traditional margin reservation method is effective 

to significantly enhance the availability of a lightpath service, 

while not significantly increasing spectrum resource used. 

 
(a) NSFNET 

 
(b) USNET 

Fig. 6. Lightpath service availabilities of different schemes. 
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2) SBPP 

We also analyze the service availabilities for the different 

schemes under the SBPP technique. In Fig. 6, we see that the 

scheme of “W: trad_P: trad” still achieves the highest service 

availability due to its higher OSNR margins reserved for both 

working and protection lightpaths. In contrast, the scheme of 

“W: ML_P: ML” shows the lowest service availability due to 

its lower margin reserved by the ML-based QoT prediction 

method, which leads to higher failure probabilities of all the 

established lightpaths. As an intermediate case, the scheme of 

“W: ML_P: trad” achieves an intermediate availability between 

the previous two. However, different from the results of 1+1 

path protection, the service availability of this scheme is not 

close to “W: trad_P: trad,” but close to “W: ML_P: ML.” 

Specifically, in NSFNET, the reductions of service availability 

by “W: ML_P: trad” and “W: ML_P: ML” relative to “W: 

trad_P: trad” are up to 53.8% and 59.8%, respectively. In 

USNET, these values are 57.4% and 61.6%, respectively. Thus, 

under SBPP, the scheme of “W: ML_P: trad” cannot continue 

ensuring a high service availability as under 1+1 path 

protection; rather, availability is significantly scarified for 

efficient spectrum resource utilization. 

We also compare the service availability of SBPP with that 

of 1+1 path protection. In Fig. 6, we note that compared with 

1+1 path protection, all the schemes under SBPP show lower 

service availabilities. This is because SBPP allows spare 

capacity sharing among protection lightpaths, which degrades 

the service availability. Specifically, when a working lightpath 

fails, 1+1 path protection can immediately restore the lightpath 

service through a dedicated protection lightpath. In contrast, 

under SBPP, the restoration of a lightpath service depends on 

the status of other working lightpaths that share common 

protection resources with the current working lightpath. Only if 

there is no competition for the shared protection resources, can 

the current lightpath service be restored using its protection 

lightpath. This restoration condition therefore degrades the 

service availability. In Fig. 6, we note that the largest difference 

of service availability between SBPP and 1+1 path protection 

occurs in the scheme of “W: ML_P: trad,” which is up to 62.1% 

and 58.5% in NSFNET and USNET, respectively. This is 

because in this scheme, all the working lightpaths employ the 

ML-based QoT prediction method, which has a low service 

availability, and moreover, the protection lightpath under SBPP 

also has a lower availability than that under 1+1 path protection. 

In summary, although SBPP requires less spectrum resource for 

lightpath establishment, it suffers from a lower service 

availability compared with 1+1 path protection.  

C. Availability Enhancement for SBPP 

Based on the above results, we understand that SBPP enables 

more efficient spectrum resource utilization, which is however 

at the cost of a lower service availability. To overcome this 

disadvantage, we need to enhance the service availability of 

SBPP. For this, in the context of the “W: ML_P: trad” scheme, 

we specifically propose two availability-enhancing approaches 

for SBPP, which adds constraints on the number of protection 

lightpaths that can share common spectrum resources and on 

the margin reduction by each working lightpath when the 

ML-based QoT prediction method is employed. 

1) Constraint on number of sharing protection lightpaths 

To enhance the service availability for SBPP, we set a 

constraint on the number of protection lightpaths that can share 

the same spectrum resources on their common traversed link(s). 

Based on the scheme of “W: ML_P: trad,” we evaluate how this 

constraint can impact the number of FSs used and service 

availability in comparison with the original 1+1 path protection 

and SBPP techniques. Fig. 7 shows the maximum number of 

FSs used, in which the numbers of shared protection lightpaths 

are set be to 2, 3, and 5, and therefore, the legend “SBPP_X” 

means SBPP subject to maximum X protection lightpaths 

allowed to share common spectrum resources. We can see that 

the constrained SBPP shows larger numbers of FSs used 

compared with the conventional SBPP. This is because the 

constraint on the number of sharing protection lightpaths will 

cause SBPP to lose some opportunity in spare capacity sharing, 

thereby requiring more spectrum resources reserved for 

pre-planned protection lightpaths. Moreover, with the decrease 

of sharing protection lightpaths, a larger number of FSs are 

used. Specifically, the scheme of “SBPP_2” shows the largest 

number of FSs used, and increases 27.3% and 5.2% in the 

number of FSs used compared with the conventional SBPP for 

NSFNET and USNET, respectively. However, compared with 

1+1 path protection, “SBPP_2” still shows a smaller number of 

FSs used, which is 10.6% and 6.2% reduction for NSFNET and 

USNET, respectively. This is because “SBPP_2” still allows 

protection lightpaths to share spare capacity, thereby improving 

spectrum resource utilization over 1+1 path protection.  

 
(a) NSFNET 

 
(b) USNET 

Fig. 7. Maximum numbers of FSs used with the constraint on the number of 

sharing protection lightpaths. 

Next, we evaluate how the service availability will be 

enhanced when the number of protection lightpaths that are 

allowed to share common spectrum resources is limited. Fig. 8 

show the service availabilities of the different schemes. We see 
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that compared with the conventional SBPP technique, the 

constrained SBPP demonstrates a higher service availability. 

The smaller the number of sharing protection lightpaths is, the 

more service availability is enhanced. Specifically, “SBPP_2” 

shows the largest enhancement in the service availability, and 

compared with the conventional SBPP, this enhancement is up 

to 19.6% and 20.2% for NSFNET and USNET, respectively. 

This means that the constraint on the number of sharing 

protection lightpaths does help enhance service availability. 

Furthermore, compared with 1+1 path protection, the service 

availability of “SBPP_2” is still poorer, with up to 51.6% and 

44.3% lower for NSFNET and USNET, respectively. Again, 

this is because although the number of sharing protection 

lightpaths is limited to 2, it is still subject to the protection 

resource competition from the second lightpath service whose 

protection lightpath shares common spectrum resources with 

the first one.  

 
(a) NSFNET 

 
(b) USNET 

Fig. 8. Lightpath service availabilities with the constraint on the number of 

sharing protection lightpaths. 

In summary, although limiting the number of sharing 

protection lightpaths can help SBPP enhance lightpath service 

availability, it still cannot achieve an availability close to 1+1 

path protection. In some scenario, if a high service availability 

is required, 1+1 path protection is still needed.  

2) Constraint on D-margin reserved for working lightpath 

To further increase the service availability under SBPP, we 

increase the D-margin reserved for each working lightpath in 

the context of the ML-based QoT prediction method. For 

performance evaluation, we consider the scheme of “W: ML_P: 

trad” and increase the D-margin of each working lightpath to be 

0.5, 1.0, and 1.5 dB. 

We first compare the maximum number of FSs used under 

different D-margins reserved for each working lightpath. In Fig. 

9, we see that with the increase of D-margin, more spectrum 

resources are needed to provision all the lightpath services. 

When the D-margin is set to be below 1.5 dB, “W: ML_P: trad” 

has a smaller number of FSs used than “W: trad _P: trad”, and 

when the D-margin is set to be 1.5 dB, the two schemes have 

close numbers of FSs used. Moreover, when the D-margin is set 

to be 0.5 dB, the number of FSs used is the same as that of 

zero-margin scheme in NSFNET, and the corresponding value 

is 0.15 dB in USNET. This means that setting a zero D-margin 

will not help much in network capacity utilization, but it 

scarifies service availability. Thus, an optimal D-margin should 

be considered to maximize service availability while reducing a 

minimum number of FSs used.  

 
(a) NSFNET 

 
(b) USNET 

Fig. 9. Maximum numbers of FSs used under different D-margins for working 

lightpaths. 

Next, we compare the service availability under different 

D-margins. In Fig. 10, “W: ML_P: trad (X)” corresponds to the 

scheme of “W: ML_P: trad” with X-dB D-margin reserved for 

each working lightpath. We can see that the increase of 

D-margin enhances the service availability. Specifically, when 

the D-margin is below 1.5 dB, the service availability is low. 

However, when the D-margin reaches 1.5 dB, the service 

availability enhances significantly, close to the most reliable 

scenario, i.e., “W: trad _P: trad.” 

Based on the above performance analyses, we therefore can 

conclude that for SBPP, “W: ML_P: trad” can achieve a higher 

service availability at the cost of more spectrum resources used. 

To protect against the failure of ML-based QoT prediction 

under SBPP, we need to increase the D-margin to be more than 

1.5 dB for the ML-based QoT prediction method, which can 

still reduce 0.5-dB D-margin compared with the traditional 

reservation method. 
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(a) NSFNET 

 
(b) USNET 

Fig. 10. Lightpath service availabilities under different D-margins reserved for 

working lightpaths. 

 CONCLUSION 

Employing ML-based techniques to predict the QoT of a 

lightpath can reduce margins reserved for the lightpath and 

improve spectrum resource utilization. This however would 

cause lightpath service failure if the ML-based QoT prediction 

model fails to accurately predict the actual QoT of a lightpath. 

To protect against this type of failure, we propose to take 

advantage of 1+1 path protection and SBPP that are popularly 

implemented in an optical network and reuse their protection 

resources for service recovery. To verify the efficiency of the 

proposed protection mechanism, we evaluate the maximum 

number of FSs used and service availability under the different 

protection schemes. Simulation studies showed that under 1+1 

path protection, an optimal performance tradeoff can be 

achieved if a working lightpath is established based on the 

ML-based QoT prediction method and its corresponding 

protection lightpath is established based on the traditional 

margin reservation method, which corresponds to a 2-dB 

D-margin reduction for the working lightpath. This 

configuration can not only save spectrum resources used but 

also guarantee a high service availability. Under SBPP, 

although the ML-based QoT prediction method can 

significantly save network spectrum resources used, this would 

significantly scarify the service availability. Therefore, to 

enhance the service availability, we proposed to limit the 

number of protection lightpaths that can share common 

protection resources and set an optimal D-margin to balance 

spectrum efficiency and service availability. It was found that 

although not significant, an up to 0.5-dB D-margin can be 

saved for the working lightpath by the ML-based QoT 

prediction method while guaranteeing its service availability to 

be close to the traditional method.  
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